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INTRODUCTION

The challenge of well-posed problems transcends national boundaries,
ethnic origins, political systems, economic doctrines, and religious
beliefs; the appeal is almost universal. Why? You are invited to formulate
your own explanation. We simply accept the observation and exploit it
here for entertainment and enrichment.

This book is a new, combined edition of two volumes first published
in 1970. It contains more than three hundred problems that are "off the
beaten path"—problems that give a new twist to familiar topics or that
introduce unfamiliar topics. With few exceptions, their solution requires
little more than some knowledge of elementary algebra, though a dash of
ingenuity may help. The problems range from fairly easy to hard, and
many have extensions or variations that we call challenges. Supplied
with pencil and paper and fortified with a diligent attitude, you can make
this material the starting point for exploring unfamiliar or little-known
aspects of mathematics. The challenges will spur you on; perhaps you can
even supply your own challenges in some cases. A study of these non-
routine problems can provide valuable underpinnings for work in more
advanced mathematics.

This book, with slight modifications made, is as appropriate now as it
was a quarter century ago when it was first published. The National Council
of Teachers of Mathematics (NCTM), in their Curriculum and Evaluation
Standards for High School Mathematics (1989), lists problem solving as its
first standard, stating that "mathematical problem solving in its broadest
sense is nearly synonymous with doing mathematics." They go on to say,
"[problem solving] is a process by which the fabric of mathematics is
identified in later standards as both constructive and reinforced. "

This strong emphasis on mathematics is by no means a new agenda
item. In 1980, the NCTM published An Agenda for Action. There, the NCTM
also had problem solving as its first item, stating, "educators should give
priority to the identification and analysis of specific problem solving strate-
gies. . . . [and] should develop and disseminate examples of 'good problems’
and strategies." It is our intention to provide secondary mathematics
educators with materials to help them implement this very important
recommendation.



ABOUT THE BOOK

Challenging Problems in Algebra is organized into three main parts:
"Problems,” "Solutions,” and "Answers.”" Unlike many contemporary
problem-solving resources, this book is arranged not by problem-solving
technique, but by topic. We feel that announcing the technique to be used
stifles creativity and destroys a good part of the fun of problem solving.

The problems themselves are grouped into two sections. Section I
covers eight topics that roughly parallel the sequence of a first year
algebra course. Section II presents twelve topics that roughly parallel the
second year algebra course.

Within each topic, the problems are arranged in approximate order of
difficulty. For some problems, the basic difficulty may lie in making the
distinction between relevant and irrelevant data or between known and
unknown information. The sure ability to make these distinctions is part
of the process of problem solving, and each devotee must develop this
power by him- or herself. It will come with sustained effort.

In the "Solutions" part of the book, each problem is restated and then
its solution is given. From time to time we give alternate methods of
solution, for there is rarely only one way to solve a problem. The
solutions shown are far from exhaustive, and intentionally so, allowing
you to try a variety of different approaches. Particularly enlightening is
the strategy of using multiple methods, integrating algebra, geometry, and
trigonometry. Instances of multiple methods or multiple interpretations
appear in the solutions. Our continuing challenge to you, the reader, is to
find a different method of solution for every problem.

The third part of the book, "Answers," has a double purpose. It
contains the answers to all problems and challenges, providing a quick
check when you have arrived at a solution. Without giving away the
entire solution, these answers can also give you a hint about how to
proceed when you are stuck.

Appendices at the end of the book provide information about several
specialized topics that are not usually covered in the regular curriculum
but are occasionally referred to in the solutions. This material should be
of particular interest and merits special attention at the appropriate time.

THE TOPICS COVERED

Section I. The book begins with a chapter of general problems,
simple to state and understand, that are generally appealing to
students. These should serve as a pleasant introduction to problem
solving early in the elementary algebra course.

Chaptér 2 demonstrates the true value of algebra in understanding
arithmetic phenomena. With the use of algebraic methods, students are
guided through fascinating investigations of arithmetic curiosities.
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Familiar and unfamiliar relations are the bases for some cute problems
in chapter 3. A refreshing consideration of various base systems is
offered in chapter 4. Uncommon problems dealing with the common
topics of equations, inequalities, functions, and simultaneous
equations and inequalities are presented along with stimulating
challenges in chapters 5, 6, and 7.

The last chapter of this section contains a collection of problems
summarizing the techniques encountered earlier. These problems are best
saved for the end of the elementary algebra course.

Section II. The second section opens with a chapter on one of the
oldest forms of algebra, Diophantine equations—indeterminate equations
for which only integer solutions are sought. These problems often appear
formidable to the young algebra student, yet they can be solved easily
after some experience with the type (which this section offers).

The next two chapters present some variations on familiar themes,
functions and inequalities, treated here in a more sophisticated manner
than was employed in the first section.

The field of number theory includes some interesting topics for the
secondary school student, but all too often this area of study is avoided.
Chapter 12 presents some of these concepts through a collection of
unusual problems. Naturally, an algebraic approach is used throughout.

Aside from a brief exposure to maxium and minimum points on a
parabola, very little is done with these concepts prior to a study of the
calculus. Chapter 13 will demonstrate through problem solving some
explorations of these concepts at a relatively elementary level.

Chapters 14, 15, 17, and 18 offer unconventional problems for some
standard topics: quadratic equations, simultaneous equations, series, and
logarithms. The topic of logarithms is presented in this book as an end in
itself rather than as a (computational) means to an end, which has been its
usual role. Problems in these chapters should shed some new (and dare we
say refreshing) light on these familiar topics.

Chapter 16 attempts to bring some new life and meaning, via
problem solving, to analytic geometry. Chapter 19 should serve as a
motivator for further study of probability and a consideration of general
counting techniques.

We conclude our treatment of problem solving in algebra with
chapter 20, "An Algebraic Potpourri.” Here we attempt to pull together
some of the problems and solution techniques considered in earlier
sections. These final problems are quite challenging as well as out of the
ordinary, even though the topics from which they are drawn are quite
familiar.
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USING THE BOOK

This book may be used in a variety of ways. It is a valuable supplement
to the basic algebra textbooks, both for further explorations on specific
topics and for practice in developing problem-solving techniques. The
book also has a natural place in preparing individuals or student teams for
participation in mathematics contests. Mathematics clubs might use this
book as a source of independent projects or activities. Whatever the use,
experience has shown that these problems motivate people of all ages to
pursue more vigorously the study of mathematics.

Very near the completion of the first phase of this project, the
passing of Professor Charles T. Salkind grieved the many who knew and
respected him. He dedicated much of his life to the study of problem
posing and problem solving and to projects aimed at making problem
solving meaningful, interesting, and instructive to mathematics students
at all levels. His efforts were praised by all. Working closely with this
truly great man was a fascinating and pleasurable experience.

Alfred S. Posamentier
1996



PREPARING TO
SOLVE A PROBLEM

A strategy for attacking a problem is frequently dictated by the use of
analogy. In fact, searching for an analogue appears to be a psychological
necessity. However, some analogues are more apparent than real, so
analogies should be scrutinized with care. Allied to analogy is structural
similarity or pattern. Identifying a pattern in apparently unrelated
problems is not a common achievement, but when done successfully it
brings immense satisfaction.

Failure to solve a problem is sometimes the result of fixed habits of
thought, that is, inflexible approaches. When familiar approaches prove
fruitless, be prepared to alter the line of attack. A flexible attitude may
help you to avoid needless frustration.

Here are three ways to make a problem yield dividends:

(1) The result of formal manipulation, that is, "the answer," may or may
not be meaningful; find out! Investigate the possibility that the
answer is not unique. If more than one answer is obtained, decide on
the acceptabiklity of each alternatibe. Where appropriate, estimate the
answer in advance of the solution. The habit of estimating in advance
should help to prevent crude errors in manipulation.

(2) Check possible restrictions on the data and/or the results. Vary the
data in significant ways and study the effect of such variations on the
original result.

(3) The insight needed to solve a generalized problem is sometimes
gained by first specializing it. Conversely, a specialized problem,
difficult when tackled directly, sometimes yields to an easy solution
by first generalizing it.

As is often true, there may be more than one way to solve a problem.
There is usually what we will refer to as the "peasant's way" in contrast to
the "poet’'s way"—the latter being the more elegant method.

To better understand this distinction, let us consider the following
problem:

If the sum of two numbers is 2, and the product of these
same two numbers is 3, {ind the sum of the reciprocals
of these two numbers.
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Those attempting to solve the following pair of equations simultane-
ously are embarking on the "peasant's way" to solve this problem.

x+y=2
xy =3

Substituting for y in the second equation yields the quadratic equation,
x2 —2x + 3 =0. Using the quadratic formula we can find x =1+ V2.

By adding the reciprocals of these two values of x, the answer %appears.

This is clearly a rather laborious procedure, not particularly elegant.
The "poet's way" involves working backwards. By considering the
desired result

+

"
< [=

and seeking an expression from which this sum may be derived, one
should inspect the algebraic sum:
Xty
xy

The answer to the original problem is now obvious! That is, since
x+y = 2andxy =3, %: -23- This is clearly a more elegant

solution than the first one.

The "poet's way" solution to this problem points out a very useful
and all too often neglected method of solution. A reverse strategy is
certainly not new. It was considered by Pappus of Alexandria about 320
A.D.In Book VII of Pappus' Collection there is a rather complete descrip-
tion of the methods of "analysis" and "synthesis." T. L. Heath, in his
book A Manual of Greek Mathematics (Oxford University Press, 1931,
pp. 452-53), provides a translation of Pappus' definitions of these terms:

Analysis takes that which is sought as if it were
admitted and passes from it through its successive
consequences to something which is admitted as the
result of synthesis: for in analysis we assume that
which is sought as if it were already done, and we
inquire what it is from which this results, and again
what is the antecedent cause of the latter, and so on,
until, by so retracing our steps, we come upon
something already known or belonging to the class of
first principles, and such a method we call analysis as
being solution backward.



But in synthesis, reversing the progress, we take as
already done that which was last arrived at in the
analysis and, by arranging in their natural order as
consequences what before were antecedents, and
successively connecting them one with another, we
arrive finally at the construction of that which was
sought: and this we call synthesis.

Unfortunately, this method has not received its due emphasis in the
mathematics classroom. We hope that the strategy recalled here will serve
you well in solving some of the problems presented in this book.

Naturally, there are numerous other clever problem-solving strategies
to pick from. In recent years a plethora of books describing various
problem-solving methods have become available. A concise description of
these problem-solving strategies can be found in Teaching Secondary
School Mathematics: Techniques and Enrichment Units, by A. S.
Posamentier and J. Stepelman, 4th edition (Columbus, Ohio: Prentice
Hall/Merrill, 1995).

Our aim in this book is to strengthen the reader's problem-solving
skills through nonroutine motivational examples. We therefore allow the
reader the fun of finding the best path to a problem's solution, an
achievement generating the most pleasure in mathematics.



PROBLEMS

SECTION I
First Year Algebra

1. Posers: Innocent and Sophisticated

The number of hairs on a human head, a castaway on a desert
island trying to conserve his supply of water, a stubborn watch that
stops for fifteen minutes every hour — these are some of the fanciful
settings for the problems in this opening section. A variety of mathe-
matical ideas are encountered in the problems, with the Pigeon Hole
Principle and the mathematics of uniform motion receiving the greatest
share of attention.

1-1 Suppose there are 6 pairs of blue socks all alike, and 6 pairs of
black socks all alike, scrambled in a drawer. How many socks
must be drawn out, all at once (in the dark), to be certain of
getting a matching pair?

Challenge 1 Suppose the drawer contains 3 black pairs of socks, 7
green pairs, and 4 blue pairs, scrambled. How many socks
must be drawn out, all at once (in the dark), to be certain
of getting a matching pair?

Challenge 2 Suppose there are 6 different pairs of cuff links scrambled
in a box. How many links must be drawn out, all at once
(in the dark), to be certain of getting a matching pair?

1-2 Find five positive whole numbers a, b, c, d, e such that there is no
subset with a sum divisible by 5.

1-3 A multiple dwelling has 50 letter boxes. If 101 pieces of mail are
correctly delivered and boxed, show that there is at least one
letter box with 3 or more pieces of mail.
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Challenge 1
Challenge 2
Challenge 3
Challenge 4

What conclusion follows if there are 102 pieces of mail?
What conclusion follows if there are 150 pieces of mail?
What conclusion follows if there are 151 pieces of mail?

If no human being has more than 300,000 hairs on his
head, and the population of Megalopolis is 8,000,000
persons, what is the least value of » in the assertion that
there are n persons in Megalopolis with the same number
of hairs on their heads? (Assume that all people have at
least one hair on their head.)

1-4 Assume that at least one of a; and b, has property P, and at
least one of a; and b, has property P, and at least one of a3 and
b3 has property P. Prove that at least two of a,, a,, a3, or at
least two of b,, b,, bz have property P.

Challenge 1

Challenge 2

Challenge 3

Add to the information in Problem 1-4 that at least one
of a4 and by has property P, and that at least one of
as and b has property P. Prove that at least 3 of the a’s,
or at least 3 of the b’s have property P.

Assume that property Q is possessed by at least one of
aiy, by, c1, by at least one of a,, by, Cs, . .., by at least
one of ayg, byg, c1o. Find the largest value of k in the
assertion that at least k of the a’s, or at least k of the b’s,
or at least k of the c’s have property Q.

Assume that property R is possessed by at least two of
ai, by, ¢y, by at least two of ay, by, ca, . .., by at least
two of ag, bs, c5. Find the largest value of m for which it
can be said that at least m of the a’s, or of the b’s, or of
the c’s have property R.

1-5 An airplane flies round trip a distance of L miles each way. The
velocity with head wind is 160 m.p.h., while the velocity with tail
wind is 240 m.p.h. What is the average speed for the round trip?

1-6 Assume that the trains between New York and Washington leave
each city every hour on the hour. On its run from Washington to
New York, a train will meet n trains going in the opposite direc-
tion. If the one-way trip in either direction requires four hours
exactly, what is the value of n?
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Challenge Change “four hours exactly” to ‘“‘three and one-half hours
exactly” and solve the problem.

1-7 A freight train one mile long is traveling at a steady speed of
20 miles per hour. It enters a tunnel one mile long at 1 pP.M. At
what time does the rear of the train emerge from the tunnel?

1-8 A watch is stopped for 15 minutes every hour on the hour. How
many actual hours elapse during the interval the watch shows
12 noon to 12 midnight?

Challenge 1 A watch is stopped for 15 minutes every hour on the
hour. According to this watch, how many hours elapse
between 12 noon and 12 midnight (actual time)?

Challenge 2 Between 12 noon and 12 midnight, a watch is stopped for
1 minute at the end of the first full hour, for 2 minutes at
the end of the second full hour, for 3 minutes at the end of
the third full hour, and so forth for the remaining full
hours. What is the true time when this watch shows 12
midnight?

1-9 The last three digits of a number N are x25. For how many values
of x can N be the square of an integer?

1-10 A man born in the eighteenth century was x years old in the
year x2. How old was he in 1776? (Make no correction for
calendric changes.)

Challenge 1 Is there a corresponding puzzle for the nineteenth cen-
tury? If so, find the man’s age in 1876.

Challenge 2 Show that there is no corresponding puzzle for the
twentieth century.

1-11 To conserve the contents of a 16 oz. bottle of tonic, a castaway
adopts the following procedure. On the first day he drinks 1 oz.
of tonic and then refills the bottle with water; on the second day
he drinks 2 oz. of the mixture and then refills the bottle with
water; on the third day he drinks 3 oz. of the mixture and again
refills the bottle with water. The procedure is continued for suc-
ceeding days until the bottle is empty. How many ounces of water
does he thus drink?
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Challenge Assume that the castaway drinks only 5 oz. the first day,
1 oz. the second day, 1 oz. the third day, and so forth.

Find the total consumptlon of water.

1-12 Which yields a larger amount with the same starting salary:
Plan I, with four annual increases of $100 each, or
Plan II, with two biennial increases of $200 each?

Challenge How does the result change if the increase under Plan I1
is $250?

1-13 Assuming that in a group of n people any acquaintances are
mutual, prove that there are two persons with the same number
of acquaintances.

1-14 The smallest of n consecutive integers is j. Represent in terms of j
(a) the largest integer L (b) the middle integer M.

Challenge 1 Let j be the largest of » consecutive integers. Represent
in terms of j (a) the smallest integer S (b) the middle
integer M.

Challenge 2 Let j be the smallest of n consecutive even integers.
Represent in terms of j (a) the largest integer L (b) the
middle integer M.

Challenge 3 Let j be the smallest of n consecutive odd integers.
Represent in terms of j (a) the largest integer L (b) the
middle integer M.

Challenge 4 If n is a multiple of 4, find the integer in position 3—:

for the original problem and each of Challenges 1, 2,
and 3.

1-15 We define the symbol |x| to mean the value x if x > 0, and the
value —x if x < 0. Express |x — y| in terms of max(x, y) and
min(x, y) where max(x, y) means x if x > y, and y if x < y,
and min(x, y) means x if x < y, and y if x > y.

Challenge 1 Does the result cover the case when x = y?

x+y+ @, and find the

corresponding expression for min(x, y).

Challenge 2 Prove that max(x, y) =
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xifx>0 _ —xifx<0
116 Let x* = gy < 0, 201t = | g3rxSo.
Express:
(@) x in terms of x* and x~ (b) |x| in terms of x* and x~
(¢) x* in terms of |x| and x (d) x™ in terms of [x| and x.

(See problem 1-15 for the meaning of |x|.)

1-17 We define the symbol [x] to mean the greatest integer which is
not greater than x itself. Find the value of [y] 4+ [1 — y].

Challenge 1 Find the value of (a) [y] — [1 — y] () [1 — y] — [¥).

Ix]

X
a positive non-integer (c¢) x is a negative non-integer.

Challenge 3 Evaluate D = [x2] — [x]?when (@)0 < x < 1 ()1 <
x<2()2<x<3.

Challenge 2 Evaluate F = = when (a) x is an integer (x = 0) (b) x is

Challenge 4 Find an x satisfying the equation [x]x = 11.

Challenge 5 Let (x) = x — [x]; express (x 4+ ») in terms of (x)
and (y).

1-18 At what time after 4:00 will the minute hand overtake the hour
hand?

Challenge 1 At what time after 7:30 will the hands of a clock be
perpendicular?

Challenge 2 Between 3:00 and 4:00 Noreen looked at her watch and
noticed that the minute hand was between 5 and 6. Later,
Noreen looked again and noticed that the hour hand
and the minute hand had exchanged places. What time
was it in the second case?

Challenge 3 The hands of Ernie’s clock overlap exactly every 65
minutes. If, according to Ernie’s clock, he begins working
at 9 A.M. and finishes at 5 p.M., how long does Ernie work,
according to an accurate clock?
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2 Arithmetic: Mean and Otherwise

“Mathematics is the queen of the sciences, and arithmetic is her
crown,” said the great mathematician Carl Friedrich Gauss. School
arithmetic eventually grows up and turns into the branch of mathe-
matics called number theory, which has fascinated mathematicians and
amateurs alike through the ages. In this section, you will find problems
from number theory involving such topics as means, factorization,

primes, divisibility, partitions, and remainders.

2-1 The arithmetic mean (A.M.), or ordinary average, of a set of
50 numbers is 32. The A.M. of a second set of 70 numbers is 53.
Find the A.M. of the numbers in the sets combined.

Challenge 1 Change the AM. of the second set to —53, and solve.

Challenge 2 Change the number of elements in each set to 1, and
solve.

Challenge 3 Find the point-average of a student with A in mathe-
matics, A in physics, B in chemistry, B in English, and
C in history — using the scale: A, 5 points; B, 4 points;
C, 3 points; D, 1 point — when (a) the credits for the
courses are equal (b) the credits for the courses are
mathematics, 4; physics, 4; chemistry, 3; English, 3;
and history, 3.

Challenge 4 (a) Given n numbers each equal to 1 4 '11, and two num-
bers each equal to 1; find their A.M. (b) Given n numbers
each equal to 1 + ’1,, and one number 1; find their A.M.
Which of (a) and (b) is larger?

Challenge 5 Given n numbers each equal to 1 — ’l,, and one number
2; find their A.M.

Challenge 6 In order to find the A.M. of 8§ numbers a,, a,, ..., as,
Carl takes one-half of%sl + ‘1—1s2 where s; = a; + as +
az + a4, and s; = a5 + ag + a; + ag; and Caroline

takes one-half of %s?, + ‘l‘s‘, where s3 = a; + asz +
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as + a;, and sq4 = a; + a4 + ag + ag. Explain why
both obtain the correct A.M.

Challenge 7 Estimate the approximate A.M. of the set {61, 62, 63, 65,
68, 73, 81, 94}.

2-2 Express the difference of the squares of two consecutive even
integers in terms of their arithmetic mean (A.M.).

Challenge How does the result change if two consecutive odd integers
are used?

2-3 It is a fundamental theorem in arithmetic that a natural number
can be factored into prime factors in only one way — if the order
in which the factors are written is ignored. This is known as the
Unique Factorization Theorem. For example, 12 is uniquely
factored into the primes 2, 2, 3.

Consider the set S; = {4,7,10,...,3k + 1,...}, in which
k=12,...,n,....Does S; have unique factorization?

Challenge Is factorization unique in S; = {3,4,5,...,k,...}?
2-4 What is the smallest positive value of n for which n2 + n + 41
is not a prime number?

Challenge Examine the expression n? — n + 41 for primes.

2-5 Given the positive integers a, b, ¢, d with ;—: < ‘—ci < 1; arrange in

. . . " d bd b+d
order of increasing magnitude the five quantities: bdbd b+
ac a a-+tc

s L.

2-6 It can be proved (see Appendix I) that, for any natural number n,
the terminal digit of n® is the same as that of n itself; that is,
n5tpn, where the symbol TD means “‘has the same terminal digit.”
For example, 4°TD4.

Find the terminal digit of (a) 2!2 (b) 23° (¢) 77 (d) 8° (e) 810 - 7!
Challenge Find the terminating digit of (a) (g)5 () (;) 5.
27 If N=1-2-3---100 (more conveniently written 100!), find

the number of terminating zeros when the multiplications are
carried out.
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Challenge Find the number of terminating zeros in D = 36! — 24!

2-8 Find the maximum value of x such that 2* divides 21!
Challenge 1 Find the highest power of 3 in 21!

Challenge 2 Find the highest power of 2 in 21! excluding factors also
divisible by 3.

2-9 The number 1234 is not divisible by 11, but the number 1243, ob-
tained by rearranging the digits, is divisible by 11. Find all the
rearrangements that are divisible by 11.

Challenge Solve the problem for 12034,

2-10 Let k be the number of positive integers that leave a remainder
of 24 when divided into 4049. Find k.

Challenge 1 Find the largest integer that divides 364, 414, and 539
with the same remainder in each case.

Challenge 2 A somewhat harder problem is this: find the largest
integer that divides 364, 414, and 541 with remainders
Ry, R, and Rj, respectively, such that R, = R; + 1,
and R3 = Ry + 1.

Challenge 3 A committee of three students, 4, B, and C, meets and
agrees that A report back every 10 days, B, every 12
days, and C, every 15 days. Find the least number of
days before C again meets both 4 and B.

2-11 List all the possible remainders when an even integer square is
divided by 8.

Challenge List all the possible remainders when an odd integer square
is divided by 8.

2-12 Which is larger: the number of partitions of the integer N =
k - 102 into 2k + 1 positive even integers, or the number of par-
titions of N into 2k + 1 positive odd integers, where k = 1, 2,
3,...?7 To partition a positive integer is to represent the integer
as a sum of positive integers.

2-13 Given the three-digit number N = a,a.a3, written in base 10,
find the least absolute values of m;, msy, m3 such that N is di-
visible by 7 if mia; + maas + maas is divisible by 7.
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Challenge 1 Solve the problem for the six-digit number N =
a1a2a3Q4a54¢.
NOTE: Only |m,|, |mg|, and |m3| are needed.

Challenge 2 Solve the problem for the four-digit number N =
a1a.as3a,.

2-14 When x® + a is divided by x + 2, the remainder is known to
be —15. Find the numerical value of a.

Challenge 1 Find the smallest value of a for which x3 + a is exactly
divisible by x 4 2.

Challenge 2 Find the value of a in the original problem when x + 2
is replaced by x — 2.

2-15 If x — ais a factor of x2 + 2ax — 3, find the numerical value(s)
of a.

Challenge 1 Find the remainder when P(x) = x% — 2x2 + 2x — 2
is divided by x + 1.

Challenge 2 Find the remainder when x% + 1 is divided by x — m.
Find the remainder when x® + 1 is divided by x + m.
Find the remainder when x® + 1 is divided by x* — m.
HNT: x® 4+ 1 = x3)3 + 1

2-16 Let N be the product of five different odd prime numbers. If NV is
the five-digit number abcab, 4 < a < 8, find N,

2-17 If a five-digit number N is such that the sum of the digits is 29,
can N be the square of an integer?

2-18 Each of the digits 2, 3, 4, 5 is used only once in writing a four-
digit number. Find the number of such numbers and their sum.

2-19 Find all positive integral values of k for which 8k 4 1 expressed
in base 10 exactly divides 231 expressed in base 8.

Challenge Solve the problem with 231 expressed in base 12,

2-20 Express in terms of n the positive geometric mean of the positive
divisors of the natural number n. Definition: The positive geo-
metric mean of the k positive numbers a;, as,..., a; is
\k/alag oo Q.
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3 Relations: Familiar and Surprising

Relations defined by equations and inequalities are a common
feature of the algebraic landscape. Some of the sources for the unusual
relations in these problems are monetary transactions, percents, and
the Cartesian lattice.

3-1 Lety, = ;—+—~ Let yg be the simplified expression obtained by
replacing x in y, by . Let y3 be the simplified expression

obtained by replacmg Xx in yg by 1, and so forth. Find
Yes YV100s Vs01-

Challenge 1 Find the value of y390 when x = 2.

Challenge 2 Find the value of y5q, when x = 2

Challenge 3 Find the value of y54; when x = 1. Be careful'
Challenge 4 Find the value of y,4¢ when x = 1. Be doubly careful!

3-2 Let us designate a lattice point in the rectangular Cartesian plane
as one with integral coordinates. Consider a rectangle with sides
parallel to the axes such that there are s, lattice points in the base
and s lattice points in the altitude. The vertices are lattice points.
(a) Find the number of interior lattice points, N(J).

(b) Find the number of boundary lattice points, N(B).
(¢) Find the total number of lattice points, N.

Challenge Suppose the word ““rectangle” is changed to “square’; find
N(I), N(B), and N.

3-3 An approximate formula for a barometric reading, p(millimeters),
for altitudes A(meters) above sea level, is p = 760 — .09k, where
h < 500. Find the change in p corresponding to a change in A
from 100 to 250.

Challenge Find the lowest and the highest pressures for which this
formula is valid.

3-4 A student wishing to give 25 cents to each of several charities
finds that he is 10 cents short. If, instead, he gives 20 cents to
each of the charities, then he is left with 25 cents. Find the
amount of money with which the student starts.
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Challenge 1 How does the answer change if the original shortage is
15 cents?

Challenge 2 How does the answer change if the original shortage is
20 cents?

Challenge 3 How does the answer change if the original shortage
is 25 cents?
3-5 Find two numbers x and y such that xy, 5 ,and x — y are equal.

Challenge 1 Find two numbers x and y such that xy = 27x = 3(x — p).

Challenge 2 Solve the problem for xy = % = 2(x — y).

3-6 A merchant on his way to the market with n bags of flour passes
through three tollgates. At the first gate, the toll is ‘1—‘ of his hold-
ings, but 3 bags are returned. At the second gate, the toll is % of
his (new) holdings, but 2 bags are returned. At the third gate, the
toll is % of his (new) holdings, but 1 bag is returned. The merchant
arrives at the market with exactly g bags. If all transactions in-

volve whole bags, find the value of n.

Challenge Solve the problem if the first toll is é of the holdings, plus
% of a bag; the second toll is é of his (new) holdings,

plus lofa bag; and the third toll is L of his (new) holdings,
5 4

plus ‘l‘ of a bag; and he arrives at the market with exactly
n—1

2

bags.

3-7 The number N, is 259, more than the number N,, the number
N3 is 209, more than N, and the number N, is x%, less than Nj.
For what value of x is Ny = N,?

Challenge Solve the problem generally if N, is a%, more than N,
and N3 is %, more than N,.

3-8 Let R = px represent the revenue, R (dollars), obtained from the
sale of x articles, each at selling price p (dollars). Let C = mx + b
represent the total cost, C, in dollars, of producing and selling
these x articles. How many articles must be sold to break even?
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Challenge 1 What must the relation be between p and m (the unit
marketing cost) to make the result meaningful? The unit
marketing cost is the total marketing costs divided by the
number of units marketed.

Challenge 2 How do you interpret the constant b in the given formula?

Challenge 3 Find the value of x so that the revenue exceeds the cost
by $100.

Challenge 4 Find the value of x so that the revenue exceeds the cost
by D dollars.

Challenge 5 Find the profit if the number of articles sold is o —m

3-9 In a certain examination it is noted that the average mark of
those passing is 65, while the average mark of those failing is 35.
If the average mark of all participants is 53, what percentage of
the participants passed?

Challenge 1 Try this problem with the following changes. Replace 65
by 70, 35 by 36, but leave 53 unchanged.

Challenge 2 What is the result if the only change is 65 to 62?

3-10 Under plan I, a merchant sells n, articles, priced 1 for 2¢, with

a profit of }‘¢ on each article, and nq articles, priced 2 for 3¢,

with a profit of %;é on each article. Under Plan II, he mixes the
articles and sells them at 3 for 5¢. If ny + n, articles are sold

under each plan, for what ratio :—2' is the profit the same?

Challenge Change 2¢ to p¢ and 3¢ to ¢g¢ and solve the problem.

3-11 The sum of two numbers x and y, with x > y, is 36. When x is
divided by 4 and y is divided by 5, the sum of the quotients is 8.
Find the numbers x and y.

3-12 Find the values of x satisfying the equation [x — a| = |x — b,
where a, b are distinct real numbers.

Challenge 1 Find the values of x satisfying the equation |x — 1| =
Ix — 2.



Relations: Familiar and Surprising 13

Challenge 2 Find the values of x satisfying the equation |x + 1| =
|x — 2].

Challenge 3 Find the values of x satisfying the equation |2x — 1| =
[x — 2|.

Challenge 4 Find the values of x satisfying the equation {3x — 1| =
[x — 2.

Challenge 5 Find the values of x satisfying the equation |2x — 1| =
[2x — 2|.

Challenge 6 Find the values of x satisfying the equation |2x — 1f =

[3x — 3.

Challenge 7 Now try the more difficult equation [x — 1] + |[x — 2| =
[x — 3.

3-13 Two night watchmen, Smith and Jones, arrange for an evening
together away from work. Smith is off duty every eighth evening
starting today, while Jones is off duty every sixth evening starting
tomorrow. In how many days fram today can they get together?

Challenge Solve the problem if Smith is off duty every eighth evening
starting today, while Jones is off duty alternately every sixth
evening and every thirteenth evening starting tomorrow.

3-14 A man buys 3-cent stamps and 6-stamps, 120 in all. He pays for
them with a $5.00 bill and receives 75 cents in change. Does he
receive the correct change?

Challenge 1 Would 76 cents change be correct? Would 74 cents
change be correct?

Challenge 2 If the correct change had to consist of 3 coins limited
to nickels, dimes, and quarters, list the 3-coin combina-
tions yielding an acceptable answer.

3-15 In how many ways can a quarter be changed into dimes, nickels,
and cents?

Challenge Is the answer unique if it is stipulated that there are five
times as many coins of one kind as of the other two kinds?

3-16 Find the number of ways in which 20 U.S. coins, consisting of
quarters, dimes, and nickels, can have a value of $3.10.
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4 Bases: Binary and Beyond

Prepare for a voyage to the far-out world of bases different from
ten. The two main “stops” along the way are rational numbers in other
bases and divisibility. You may want to read Appendix V in the back
of the book before attacking the problems. It contains some unusual
information on divisibility.

4-1 Can you explain mathematically the basis for the following correct
method of multiplying two numbers, sometimes referred to as the
Russian Peasant Method of multiplication?

Let us say that we are to find the product of 19 X 23. In
successive rows, we halve the entries in the first column, rejecting
the remainders of 1 where they occur. In the second column, we
double each successive entry. This process continues until a 1

appears in column 1.
1 11

19123
9 |46
4 192
2 | 184
1 | 368

437

We then add the entries in column 1I, omitting those that are
associated with the even entries in column I.

42 If x = {0,1,2,...,n,...}, find the possible terminating digits
of x2 4 x in base 2.

Challenge 1 Ifx = {0,1,2,...,n,...}, find the possible terminating
digits of x> + x + 1 in base 2.

Challenge2 Ifx = {0,1,2,...,n,...},find the possible terminating
digits of x2 4+ x in base 5.

Challenge 3 Ifx = {0,1,2,...,n,...}, find the possible terminating
digits of x2 + x + 1 in base 5.
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4-3 Find the base b such that 72, = 2(27;). 72, means 72 written in
base b.

Challenge 1 Try the problem for 73, = 2(37).
Challenge 2 Try the problem for 72, = 3(27;).

4-4 In what base b is 441, the square of an integer?

Challenge 1 If N is the base 4 equivalent of 441 written in base 10,
find the square root of N in base 4.

Challenge 2 Find the smallest base b for which 294, is the square of
an integer.

4-5 Let N be the three-digit number a,a,a; written in base b, b > 2,
and let S = a; + as + as. Prove that N — S is divisible by
b-1.

Challenge 1 Prove the result for the n-digit number a,a;...a,,
written in base b.

Challenge 2 Explain the connection between this theorem and the
test for divisibility by 9 in the decimal system. (See
Appendix V.)

Challenge 3 Show that 73 written in base 9 is not divisible by 8, while
73 written in base 11 is divisible by 10.

4-6 Let N be the four-digit number aga;a2a3 (in base 10), and let N’
be the four-digit number which is any of the 24 rearrangements
of the digits. Let D = |N — N’|. Find the largest digit that exactly
divides D.

Challenge 1 Does the theorem hold for five-digit numbers? Does it
hold for n-digit numbers, where n is any natural number,
including single-digit numbers?

Challenge 2 Let N be the three-digit number abc with a > ¢. From N
subtract the three-digit number N’ = cba. If the digit on
the left side of the difference is 4, find the complete
difference.

4-7 Express in binary notation (base 2) the decimal number 6.75.

Challenge 1 Convert the decimal number N = 19.65625 into a binary
number.



16 PROBLEMS

Challenge 2 Does the (base 10) non-terminating expansion 5.333 . ..
terminate when converted into base 27

4-8 Assumer = {6,7,8,9,10} and 1 < a < r. Ifthere is exactly one
integer value of a for which % , expressed in the base r, is a termi-

nating »-mal, find r.

Challenge Try the problem with g instead of ‘11 .

4-9 From the unit segment OA extending from the origin O to A(1, 0),
remove the middle third. Label the remaining segments OB and
CA, and remove the middle third from segment OB. Label the
first two remaining segments OD and EB. Express the coordinates
of D, E, and B in base 3.

Challenge Remove the middle third from segment CA, and label the
remaining segments CF and FG. Express in base 3 the
coordinates of C, F, and G.

4-10 Assume that there are n stacks of tokens with » tokens in each
stack. One and only one stack consists entirely of counterfeit
tokens, each token weighing 0.9 ounce. If each true token weighs
1.0 ounce, explain how to identify the counterfeit stack in one
weighing, using a scale that gives a reading. You may remove
tokens from any stack.

Challenge 1 Which is the counterfeit stack if the overall deficiency is

4
5 ounce?

Challenge 2 What changes should be made in the analysis and
solution if (a) each true token weighs 1.0 ounce and each
counterfeit weighs 1.1 ounce? (b) each true token weighs
1.1 ounce and each counterfeit weighs 0.9 ounce?

Challenge 3 Solve the generalized problem of n stacks with n tokens
each, if each true token weighs ¢ ounces and each counter-
feit weighs s ounces. Then apply the result to Problem
4-10 and its challenges.
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5 Equations, Inequations, and Pitfalls

Equations and inequalities play a double role on the problem-
solving stage. They may be the stars of the show if they are tricky to
solve or especially interesting. More often, they are in the supporting
cast, serving as the indispensable tool for expressing the data in a
problem. Both roles are explored in this section.

_—4 .
x—2 x-=2

Challenge Find the values of x satisfying the equation vVx — 2 = —3.

5-1 Find the solution set of the equation

x -3

2y — 17
3

5-2 Find the pairs of numbers x, y such that =x— 3.

x — x—3.
2y -7 2-1y

Challenge Find the pairs (x, y) such that

5-3 Find all the real values of x such that [v/x — v2| < L.

Challenge Let the set of all values of x satisfying the inequalities
[x — 8 < 6 and |x — 3] > 5 be written as a < x < b.
Find b — a.

5-4 Find all values of x satisfying the equation 2x = |x| + 1.

Challenge Compare this result with that obtained by solving the
equation 2x = —|x| + 1, and try to interpret this new
equation geometrically.

5-5 Find the values of a and b so that ax + 2 < 3x + & for all
x < 0.

Challenge rind values of @ and b so that ax + 2 > 3x + b for all
x < 0.

5-6 Find all positive integers that leave a remainder of 1 when di-
vided by 5, and leave a remainder of 2 when divided by 7.

Challenge 1 Change the first remainder to 2, and the second re-
mainder to 1, and solve the problem.

Challenge 2 Solve the problem with the first remainder 1 < r; < 4,
and the second remainder 1 < r; < 6.
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5-7 On a fence are sparrows and pigeons. When five sparrows leave,
there remain two pigeons for every sparrow. Then twenty-five
pigeons leave, and there are now three sparrows for every pigeon.
Find the original number of sparrows.

Challenge 1 Replace “five” by a and “twenty-five” by b, and find
s and p (the number of sparrows and the number of
pigeons, respectively).

Challenge 2 Solve the problem generally using r; and r,, respectively,
for the two ratios, and a and b as in Challenge 1.

5-8 A swimmer at 4, on one side of a straight-banked canal 250 feet
wide, swims to a point B on the other bank, directly opposite
to A. His steady rate of swimming is 3 ft./sec., and the canal flow
is a steady 2 ft./sec. Find the shortest time to swim from A4 to B.

5-9 Miss Jones buys x flowers for y dollars, where x and y are integers.
As she is about to leave the clerk says, “If you buy 18 flowers
more, I can let you have them all for six dollars. In this way you
save 60 cents per dozen.” Find a set of values for x and y satisfying
these conditions.

Challenge Finding Miss Jones hesitant at the first offer, the clerk adds,
“If you buy 24 flowers more, I can let you have them all
for $6.75. In this way you save 75 cents per dozen.” Does
the same set of values for x and y satisfy these new
equations?

5-10 Find the set of real values of x satisfying the equation

x+5_x+6_x+7_x+8_
x+4 x+5 x+6 x+17

Challenge 1 After solving the problem can you find, by inspection,
the answer to

x+6_x+7_x+8_x+9,)
x4+ 5 x+6 x+17 x+8°

Challenge 2 Solve the more general problem

x+a+1 x+a+2 x+a+3 x+a+44

x+a x+a+1 x+a+t2 xta+3
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5-11 The contents of a purse are :10t revealed to us, but we are told
that there are exactly 6 pennies and at least one nickel and one
dime. We are further told that if the number of dimes were
changed to the number of nickels, the number of nickels were
changed to the number of pennies, and the number of pennies
were changed to the number of dimes, the sum would remain un-
changed. Find the least possible and the largest possible number
of coins the purse contains.

Challenge 1 How does the situation change if the number of nickels
is 6, and the number of dimes and the number of pennies
are unspecified, except that there must be at least one
of each?

Challenge 2 What solution is obtained if the number of dimes is 6,
but the nickels and pennies are unspecified?

Challenge 3 Explain why, in the original problem, the least number
of coins yields the greatest value, whereas in Challenges 1
and 2 the least number of coins yields the smallest value.

Challenge 4 Investigate the problem if there are exactly 6 pennies,
and at least one nickel, one dime, and one quarter.

5-12 A shopper budgets twenty cents for twenty hardware items.
Item A is priced at 4 cents each, item B, at 4 for 1 cent, and item C,
at 2 for 1 cent. Find all the possible combinations of 20 items made
up of items A, B, and C that are purchasable.

5-13 Partition 75 into four positive integers a, b, ¢, d such that the
results are the same when 4 is added to a, subtracted from b,
multiplied by ¢, and divided into d. To partition a positive integer
is to represent the integer as a sum of positive integers.

Challenge 1 Partition 48 into four parts a, b, ¢, d such that the results
are the same when 3 is added to @, subtracted from b,
multiplied by ¢, and divided by d.

Challenge 2 Partition 100 into five parts a, b, ¢, d, e so that the results
are the same when 2 is added to g, 2 is subtracted from b,
2 is multiplied by ¢, 2 is divided by d, and the positive
square root is taken of e.
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5-14 Two trains, each traveling uniformly at 50 m.p.h., start toward
each other, at the same time, from stations 4 and B, 10 miles
apart. Simultaneously, a bee starts from station A, flying parallel
to the track at the uniform speed of 70 m.p.h., toward the train
from station B. Upon reaching the train it comes to rest, and allows
itself to be transported back to the point where the trains pass
each other. Find the total distance traveled by the bee.

5-15 One hour out of the station, the locomotive of a freight train
. 3 .
develops trouble that slows its speed to 3 of its average speed

up to the time of the failure. Continuing at this reduced speed
it reaches its destination two hours late. Had the trouble occurred
50 miles beyond, the delay would have been reduced by 40
minutes. Find the distance from the station to the destination.

5-16 Two trains, one 350 feet long, the other 450 feet long, on parallel
tracks, can pass each other completely in 8 seconds when moving
in opposite directions. When moving in the same direction, the
faster train completely passes the slower one in 16 seconds. Find
the speed of the slower train.

Challenge 1 Show that, if the respective times are 7; and 7, with
ts > t1, the results are

800(r2 + ¢,) _ 800(r2 — t1)
2tat, and s = 22ty

f=

Challenge 2 Show that, if the respective times are ¢; and ¢, with
t2 > t1, and the respective lengths are L; and L,, the
results are

_ Ly + L)tz 4 1) _ Ly + L)tz — 11)
f= 2121, and s = 212t

Use this formula to solve the original problem.

5-17 The equation 5(x — 2) = g (x + 2) is written throughout in

base 9. Solve for x, expressing its values in base 10.

5-18 Find the two prime factors of 25,199 if one factor is about twice
the other.
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Challenge Find the three prime factors of 27,931 if the three factors

are approximately in the ratio 1:2:3.

5-19 When asked the time of the day, a problem-posing professor
answered, “If you add one-eighth of the time from noon until
now to one-quarter the time from now until noon tomorrow, you
get the time exactly.” What time was it?

Challenge 1

Challenge 2

Challenge 3

5-20 Solve 5 +

On another occasion the professor said, “If from the
present time, you subtract one-sixth of the time from now
until noon tomorrow, you get exactly one-third of the
time from noon until now.” Find the present time.

If, as the result of daylight-saving time confusion, the
professor’s watch is one hour fast, find the change needed
in the original statement “‘one-eighth of the time from
noon until now” to yield the answer 5:20 p.M. true time.

One day the professor forgot his watch. A colleague, of
whom he asked the time, in an attempt to cure the pro-
fessor of his mannerism, replied, “If you subtract two-
thirds the time from now until noon tomorrow from
twice the time from noon to now, you get the time short
by ten minutes.”

Do you agree with the professor that it was 9:30 p.M.?

1 .
=3 for integer values of x, y, and z.

N}

5-21 Prove that, for the same set of integral values of x and y, both
3x 4+ y and 5x + 6y are divisible by 13.
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6 Correspondence: Functionaliy
Speaking

Finding a particular value of a function or its range of values is
ordinarily a routine task. But not for the functions considered in this
section. In addition to functions defined algebraically, there are
functions defined in terms of geometric ideas such as paths along a
coordinate grid and partitions of the plane by families of lines.

6-1 Define the symbol f(a) to mean the value of a function f of a
variable n when n = a. If f(1) = 1 and f(n) = n+ fin — 1)
for all natural numbers » > 2, find the value of f(6).

Challenge 1 Find f(8) by using the method of “telescopic™ addition
and, if possible, by using a short cut (see Challenge 2).

Challenge 2 Show that f(n) = 3n(n + 1).

Challenge 3 Find the value of £(10); of £(100).
Challenge 4 Find the value of n such that f(n) = 3f(5).
Challenge 5 Find the value of » such that f(4n) = 12f(n).

6-2 Each of the following (partial) tables has a function rule associ-
ating a value of n with its corresponding value f(n). If f(n) =
An 4 B, determine for each case the numerical values of A4

and B.

@njflm) ®)n|f(m ©nlfl) @ n|f(n) (e n|fln)
| R R E R
| R R I P
I A Y A

Challenge Now try a slightly harder table.

1 1
1§|1|§

foy | o [ -1 ] -2

n
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6-3 In a given right triangle, the perimeter is 30 and the sum of the
squares of the sides is 338. Find the lengths of the three sides.

Challenge Redo the problem using an area of 30 in place of the
perimeter of 30.

6-4 A rectangular board is to be constructed to the following speci-
fications:
(a) the perimeter is equal to or greater than 12 inches, but less
than 20 inches
(b) the ratio of adjacent sides is greater than 1 but less than 2.
Find all sets of integral dimensions satisfying these specifications.

6-5 Find the range of values of F = -1-—_':_27 for real values of x.
Challenge Find the largest and the least values of f = ?:23 for

x2>0.

6-6 Determine the largest possible value of the function x 4 4y
under the four conditions: (1) 5x + 6y < 30 (2)3x 4+ 2y £ 12
3x20@)y20.

6-7 Let us define the distance from the origin O to point 4 as the
length of the path along the coordinate lines, as shown in Fig. 6-7,
so that the distance from O to 4 is 3.
Starting at O, how many points can you reach if the distance,
as here defined, is n, where n is a positive integer?

2-9—¢A

—-

67
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6-8 Given n straight lines in a plane such that each line is infinite in
extent in both directions, no two lines are parallel (fail to meet),
and no three lines are concurrent (meet in one point), into how
many regions do the n lines separate the plane?

Challenge 1

Challenge 2

Challenge 3

Challenge 4

Challenge 5

Let there be n = r + k lines in the plane (infinite in
both directions) such that no three of the n lines are
concurrent, but k lines are parallel (but no others).
Find the number of partitions of the plane.

Let there be n straight lines in the plane (infinite in both
directions) such that three (and only three) are concurrent
and such that no two are parallel. Find the number of
plane separations.

A set of k, parallel lines in the plane is intersected by
another set of k, parallel lines, all infinite in extent. Find
the number of plane separations.

In Challenge 3, introduce an additional line not parallel
to any of the given lines, and not passing through any of
the kik, points of intersection. How many additional
regions are created by this plane? What is the total
number of plane separations?

In a given plane, let there be n straight lines, infinite in
extent, four of which, and only four, are concurrent and
no two of which are parallel. Find the number of planar
regions.

6-9 Define % as a proper fraction when % < 1 with N, D natural

numbers. Let f(D) be the number of irreducible proper fractions
with denominator D. Find f(D) for D = 51.

Challenge Find f(D) for D = 52.
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7 Equations and Inequations:
Traveling in Groups

In one way or another, the problems in this section concern systems
of equations or inequalities (or both!). Two unusual topics included
are the notion of an approximate solution for an inconsistent system
of equations and linear programming.

7-1 Let the lines 15x + 20y = —2 and x — y = —2 intersect in
point P. Find all values of k which ensure that the line 2x +
3y = k2 goes through point P.

7-2 Let (x, y) be the coordinates of point P in the xy-plane, and let
(X, Y) be the coordinates of point Q (the image of point P) in
the XY-plane. If X = x + yand Y = x — y, find the simplest
equation for the set of points in the XY-plane which is the image
of the set of points x2 + y2 = 1 in the xy-plane.

7-3 The numerator and the denominator of a fraction are integers
differing by 16. Find the fraction if its value is more than 5 but
less than ‘.—;-

T4 If x+y+2z=%k, x+2y+z=%k, and 2x + y+ z = k,
k = 0, express x2 4+ y% + 2% in terms of k.

Challenge 1 Solve the problemif x + 2y + 3z =k,3x 4+ y 4+ 2z = k,
and2x 4+ 3y+ z=k, k= 0.

Challenge 2 Show that both the problem and Challenge 1 can be
solved by inspection.

7-5 Why are there no integer solutions of x2 — 5y = 277

7-6 Civic Town has 500 voters, all of whom vote on two issues in a
referendum. The first issue shows 375 in favor, and the second
issue shows 275 in favor. If there are exactly 40 votes against both
issues, find the number of votes in favor of both issues.
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7-7 How do you find the true weight of an article on a balance scale
in which the two arms (distances from the pans to the point of
support) are unequal?

Challenge Suppose it is known that the arms of a balance scale are
unequal; how do you determine the ratio r of the arm
lengths?

7-8 Solve in base 7 the pair of equations 2x — 4y = 33 and 3x +
y = 31, where x, y, and the coefficients are in base 7.

7-9 Given the pair of equations 2x — 3y = 13 and 3x + 2y = b,
where b is an integer and 1 < b < 100, let n? = x + y, where
x and y are integer solutions of the given equations associated in
proper pairs. Find the positive values of »n for which these condi-
tions are met.

7-10 Find the set of integer pairs satisfying the system
3x+ 4y = 32
y>x
3
y< 2%
7-11 Compare the solution of system I,

x+y+z=15
2x —y+ z=10.38
x—2y—z= —02

with that of system II,

x+y+z=15
2x —y+2z=109
x—2y—2z=-02

7-12 The following information was obtained by measurement in a
series of experiments:

x+y=19
2x —y =14
x—2y= —-06
x—y=203.

Find an approximate solution to this system of equations.
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Find the maximum and the minimum values of the function
3x — y + 5, subject to the restrictions y > 1, x < y, and
2x — 3y +62=>0.

A buyer wishes to order 100 articles of three types of merchandise
identified as 4, B, and C, each costing $5, $6, and $7, respectively.
From past experience, he knows that the number of each article
bought should not be less than 10 nor more than 60, and that
the number of B articles should not exceed the number of A
articles by more than 30. If the selling prices for the articles are
$10 for A4, $15 for B, and $20 for C, and all the articles are sold,
find the number of each article to be bought so that there is a
maximum profit.

8 Miscellaneous: Curiosity Cases

The mixed bag of problems in this final section unites several
themes from earlier sections. Many problems deal with topics con-
sidered before. More important, the solutions involve techniques that
have been illustrated in previous sections.

8-1

82

. P .o x=3/x41 11
Find all values of x satisfying the equation Pary e iy

Find all real values of x satisfying the equations:

(@) x%x| = 8
() x|x%| = 8, where the symbol |x| means +x when x > 0,
and —x when x < 0.

Challenge Replace +8 by —8 in each equation and find the real

values of x satisfying the new equations.

8-3 Let P(x, y) be a point on the graph of y = x 4+ 5. Connect P

with Q(7, 0). Let a perpendicular from P to the x-axis intersect
it in R. Restricting the abscissa of P to values between 0 and 7,
both included, find:

(a) the maximum area of right triangle PRQ
(b) two positions of P yielding equal areas.
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8-4 Find the smallest value of x satisfying the conditions: x3 +
2x2 = a, where x is an odd integer, and a is the square of an
integer.

Challenge 1 Change “odd integer” to “‘even integer greater than 2,”
and solve the problem.

Challenge 2 Change x3 + 2x2 to x® — 2x2, and then solve the
problem.

Challenge 3 In Challenge 1 change x® + 2x2 to x® — 2x2 and solve
the problem.

Ix -5 A B
8-5 Ifx’—1=x—1+x+l

find the numerical value of 4 + B.

is true for all permissible values of x,

Challenge Solve the problem with B as the first numerator on the
right-hand side of the equation, and A4 as the second
numerator.

8-6 For what integral values of x and p is (x2 — x + 3)(2p + 1) an
odd number?

Challenge Solve the problem using (x2 + x + 3)2p — 1).

8-7 Express the simplest relation between a, b, and c, not all equal,
ifa2 — bc = b2 — ca = ¢% — ab.

Challenge Solve the problem for a2 + bc = b2 4+ ca = ¢? + ab.

8-8 Find the two linear factors with integral coefficients of P(x, y) =
x? — 2y — xy — x — y, or show that there are no such factors.

Challenge 1 Change P(x, y) to x2 — 2y% — xy — 2x — 5y — 3, and
find the linear factors with integral coefficients.

Challenge 2 Change P(x, y) to x2 — 2y% — xy — 2x — 5y + 3, and
show that linear factors with integral coefficients do not
exist.

8-9 Find the sum of the digits of (100,000 + 10,000 + 1000 +
100 + 10 + 1)*.
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8-10 How do you invert a fraction, using the operation of addition?

8-11 How do you generate the squares of integers from pairs of con-
secutive integers?

8-12 Is there an integer N such that N3 = 9k + 2, where k is an
integer?

Challenge Is there an integer N such that N3 = 9k 4 87

8-13 Let S, = 1"+ 2"+ 3" + 4" andlet S, =14+ 24+ 34+ 4=
10. Show that S, is a multiple of S, for all natural numbers n,
except n = 4k, wherek = 0,1,2,....

8-14 A positive integer N is squared to yield N, and N, is squared
to yield No. When N, is multiplied by N the result is a seven-
digit number ending in 7. Find N.

8-15 Let f = mx + ny, where m, n are fixed positive integers, and x, y
are positive numbers such that xy is a fixed constant. Find the
minimum value of f.
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SECTION II
Second Year Algebra

9 Diophantine Equations:
The Whole Answer

An equation with two or more variables whose values are restricted
to integers is known as a Diophantine equation after Diophantus of
Alexandria, who studied them about 1800 years ago. They may arise
in describing situations involving objects that occur only in integral
quantities. Some of the problems here, for example, concern people,
coins, or pieces of merchandise. A solution of a Diophantine equation
is an ordered pair (or triple, or quadruple, etc.) of integers. When
solutions exist, there are generally an infinite number of them. If
further restrictions are imposed on the values of the variables, such as
that they must be positive or less than a certain integer, there may be
a finite number of solutions or even just one.

9-1 A shopkeeper orders 19 large and 3 small packets of marbles, all
alike. When they arrive at the shop, he finds the packets broken
open with all the marbles loose in the container. Can you help
the shopkeeper make new packets with the proper number of
marbles in each, if the total number of marbles is 2247

Challenge Redo the problem with 19 small packets and 3 large packets.

9-2 Find the integral solutions of 6x + 15y = 23.
Challenge 1 Solve in positive integers 13x + 21y = 261.

Challenge 2 Show that there are no positive integral solutions of
17x 4+ 15y = 5 but that 17x — 15y = 5 has infinitely
many positive integral solutions.
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A picnic group transported in n buses (where n > 1 and not
prime) to a railroad station, together with 7 persons already
waiting at the station, distribute themselves equally in 14 railroad
cars. Each bus, nearly filled to its capacity of 52 persons, carried
the same number of persons. Assuming that the number of
picnickers is the smallest possible for the given conditions, find
the number of persons in each railroad car.

Challenge Solve the problem with the following changes:

9-4

(a) 11 persons are waiting at the station instead of 7.

(b) There are 22 railroad cars and each of 21 cars has the
same number of persons, but in the 22nd car there are
10 vacant seats.

Find the number of ways that change can be made of $1.00 with
50 coins (U.S.).

Challenge Solve the problem restricting the change to dimes, nickels,

9-5

and cents.

Let x be a member of the set {1, 2, 3, 4, 5, 6, 7}, y, a member of
the set {8, 9, 10, 11, 12, 13, 14}, and 2z, a member of the set
{15, 16, 17, 18, 19, 20, 21}. If a solution of x + y + z = 33
is defined as a triplet of integers, one each for x, y, and z taken
from their respective sets, find the number of solutions.

Challenge Solve the problem for x + y + z = 31.

9-6

97

9-8

R,, Ry, and Ry are three rectangles of equal area. The length of
R, is 12 inches more than its width, the length of R is 32 inches
more than its width, and the length of Rj is 44 inches more than
its width. If all dimensions are integers, find them.

Given x2 = y + aand y2 = x + a where a is a positive integer,
find expressions for a that yield integer solutions for x and y.

A merchant has six barrels with capacities of 15, 16, 18, 19, 20,
and 31 gallons. One barrel contains liquid B, which he keeps for
himself, the other five contain liquid 4, which he sells to two men
so that the quantities sold are in the ratio 1:2. If none of the
barrels is opened, find the capacity of the barrel containing
liquid B.
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9-9 Find the number of ordered pairs of integer solutions (x, y) of
the equation )lc + % = }J, P a positive integer.

9-10 Express in terms of 4 the number of solutions in positive integers
of x + y 4+ z = A where A is a positive integer greater than 3.

9.11 Solve in integers ax + by = ¢ where aq, b, and c are integers,
a< b,and 1 £ ¢ < b, with g and b relatively prime.

10 Functions: A Correspondence Course

A number of “advanced” ideas concerning functions will be en-
countered in this section. Among them are recursive definitions, limits
of functions, and composite functions. A few strange exponential
functions make an appearance, as do some unusual symmetric func-
tions. The notions of variation and continued fractions complete the
cast of characters.

10-1 Let f be defined as f(3n) = n + f(3n — 3) when n is a positive
integer greater than 1, and f(3n) = 1 when n = 1. Find the
value of f(12).

Challenge Define f to be such that f(3n) = n®> 4+ f(3n — 3). Find
f£(15).

10-2 If f is such that f(x) =1 — f(x — 1), express f(x + 1) in
terms of f(x — 1).

Challenge 1 Does the constant function f =
conditions?

satisfy these

N et

Challenge 2 Express f(x 4+ 2) in terms of f(x — 1).
Challenge 3 Express f(x 4+ n) in terms of f(x — 1).
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10-3 Let f = ax + b, g = ¢x + d, x a real number, a, b, c, d real
constants. (a) Find relations between the coefficients so that
f(g) is identically equal to x; that is, f(g) = x, and (b) show
that, when f(g) = x, f(g) implies g(f).

Challenge 1 Prove that the results are the same for f = ax — b and

g=cx—d.

Challenge 2 Solve the problem for f = ax + band g = cx — d.

10-4 If f(x) = —x"(x — )", find £(x2) + fGIf(x + D).
Challenge Find f(x*) + f(x%)f(x? + 1) by inspection.

10-5 The density d of a fly population varies directly as the population
N, and inversely as the volume ¥ of usable free space. It is also
determined experimentally that the density for a maximum
population varies directly as ¥. Express N (maximum) in terms
of V.

Challenge Solve the problem if the density for a maximum population
varies directly as /7.

10-6 Given the four elementary symmetric functions f1 = x; 4+ x2 +
X3+ X4 f2 = X1X32 + XoX3 + XaXq + X4x1, f3 = xlxzxa +
x2x3X4 + x3x4x1 4+ X4X1X2, f4 = X1X2X3X4, €Xpress S = — +
_+ +‘lnterm50ff1’f2’f3sf4

Challenge Iet g, = x; + X2 + X3, gz = xlxz + szs + X3x1,

g3 = X1Xgx3. Express T = —; + + —; in terms of
g1, &2, &3-

10-7 Let f(n) = n(n + 1) where n is a natural number. Find the values
of m and n such that 4 f(n) = f(m) where m is a natural number.

Challenge 1 Try the problem with 2f(n) = f(m).

Challenge 2 Try the problem with 5f(n) = f(m).

10-8 Find the positive real values of x such that x® = (x*)°.

Challenge For which positive values of x is x*” > (x*), and for
which positive values of x is x*7 < (x%)*?
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1

109 If x =3+ 7 and y =3+ ——, find the value of
3+ 34—
34 =
+ y
|x — .
Challenge Express 3 +2\/ﬁ as an (infinite) continued fraction. See

problem 10-10.
10-10 Assuming that the infinite continued fraction ——22—
2+
2
2+ 24
represents a finite value x, find x. (Technically, we say the infinite
continued fraction converges to the value x.)

Challenge 1 Assuming convergence, find

y=-2+ -
Y
2.
Challenge 2 Assuming convergence, find y = 1 4+ -—11— .
1+1+ :

14+---

10-11 Find 11m F; that is, the limiting value of F as h becomes arbitrarily
V3I+h—+3

close to zero where F = —————, h = 0.
Challenge 1 Find lim G where G = YZFE=VZ 1 1o
h—0
Challenge 2 Find lim H where H = ————— 4 + — V3 s, h 0,
h—0
Challenge 3 Find lim X where X = -———-—M—h—\&, h = 0.
h—0
10-12 Find the limiting value of F = —-—-Tl , x % 1, where a is a
positive integer, as x assumes values arbitrarily close to 1; that
is, find lim F.

z—1

— 20
in terms of n, that is, the

10-13 If n is a real number, find lim = —

z—2
s e n—2n
limiting value of ix—

—5 38X approaches arbitrarily close to 2.
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Challenge On the basis of the results obtained here and in Problem

x® — 3 . Xx®—gn
—3 and lim
X z—a X — 4

10-12 find, by inspection, lim

3

where a is a positive integer.

10-14 A function f is defined as

f _ {l,whenx =1,
~ \2x — 1 4 f(x — 1), when x > 2, x an integer.

Express f as the simplest possible polynomial.
Challenge 1 Solve the problem for

_ {l,whenx =0,
S = 2x 4+ 1 + f(x — 1), when x > 1, x an integer.

Challenge 2 Solve the problem for

f _ {l,whenx =0,
~ 12x — 1 + f(x — 1), when x > 1, x an integer.

11 Inequalities, More or Less

As a major means for expressing mathematical comparisons,
inequalities have become a key tool in modern mathematics. Several
problems in this section involve comparing the size of two numbers,
while others call for solving a tricky inequality. Various applications of
inequalities are made in the remaining problems.

11-1 Let P = (i — l)(% — l)(% — l), where a, b, ¢ are positive

numbers such that a + b 4 ¢ = 1. Find the largest integer N
such that P > N.

11-2 Find the pair of least positive integers x and y such that 11x —
13y =1 and x + y > 50.

Challenge 1 Replace x +y > 50 by x + y > 59 and solve the
problem.
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Challenge 2 Replace x +y > 50 by x + y > 59 and solve the
problem.

11-3 Is the following set of inequalities consistent? (Consider three
inequalities at a time.)

x+y<3 —=-x—y=20 x2>2-1, —-y<2

11-4 Find the set of values for x such that x® + 1 > x2 4+ x.

Challenge Find the set of values of x such that x3 — 1 > x% — x.

11-5 Consider a triangle whose sides a, b, ¢ have integral lengths such
that c < band b < a. If a + b + ¢ = 13 (inches), find all the
possible distinct combinations of a, b, and c.

Challenge Change the perimeter from 13 to 15 (inches) and solve the
problem.

11-6 A teen-age boy is now n times as old as his sister, where n > 3% .
In 3 years he will be n — 1 times as old as she will be then. If
the sister’s age, in years, is integral, find the present age of the boy.

Challenge Solve the problem when 3 < n < 4.

11-7 Express the maximum value of A in terms of 7 so that the follow-
ing inequality holds for any positive integer n.

R R e B R

xn =

11-8 Find the set R; = {x|x% + (x? — )2 > [2x(x? — 1)|}, and
the set R, = {x|x2 + (xZ — 1)? < [2x(x? — 1)|}.

Challenge Replace x2 4+ (x2 — 1)2by x% + (x — 1)2and 2x(x? — 1)
by 2x(x — 1) and solve the problem.

1 3 5 99 1
11-9 Show that F = E'Z"é"'ﬁ< 701
2 46 100 101

Challenge Show that P = 3°5°7°° "ol 101

11-10 Which is larger v/9! or 410! ? Be careful!
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11-11 If x is positive, how large must x be so that v/x2 4+ x — x shall
differ from 5 by less than 0.027

Challenge Solve the problem with 0.02 replaced by 0.01.

11-12 Find a rational approximation g to v/2 such that —%l <
\/§—§<$wheren$8.

11-13 Find the least value of (@, 4 a5 + a3 + a.,)(all + al + ;‘—3 + al
where each a;, i = 1, 2, 3, 4, is positive.
Challenge 1 When are the factors equal?

Challenge 2 Verify the theorem fora; = a; = -+ = a,_; = 1 and
a, = 2.

12 Number Theory: Divide and Conquer

Though many exotic branches of mathematics have flowered since
the turn of the century, some of the deepest mathematical research in
progress today concerns that oldtimer, number theory. The problems
in this section convey the flavor of this persistently vital subject. They
deal with such topics as divisibility, factorization, number bases, and
congruence.

12-1 Let N, = .888..., written in base 9, and let N, = .888...,
written in base 10. Find the value of Ny — N, in base 9.

Challenge 1 Express N; — N in base 10.

Challenge 2 Express N; — N in base 12.

12-2 Solve x% — 2x + 2 =0 (mod 5).
Challenge 1 Solve x% — 2x + 2 =0 (mod 10).
Challenge 2 Solve x% — 2x + 2 =0 (mod 17).
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12-3 Find the positive digit divisors, other than 1, of N = 664,512
written in base 9.

Challenge Is N = 664,426 written in base 8 divisible by 7?

12-4 Find all the positive integral values of n for which n* 4 4 is a
prime number.

Challenge Solve the problem for n* + n% + 1.

12-5 Let B, = x* — land let B, = x> — 1 with q, b positive integers.
If B, = x¥ — 1 is the binomial of highest degree dividing each
of B, and B,, how is y related to g and b?

Challenge Does the result hold for x> 4+ 1 and x* + 1?

126 If f(x) = x* 4+ 3x3 + 9x%2 4+ 12x + 20, and g(x) = x* +
3x% 4 4x% — 3x — 5, find the functions a(x), b(x) of smallest
degree such that a(x)f(x) + b(x)g(x) = 0.

12-7 Find the smallest positive integral value of k such that k¢ 4 1
is a triangular number when ¢ is a triangular number. (See
Appendix VII.)

12-8 Express the decimal .3 in base 7.
Challenge 1 Express the decimal .4 in base 7.
Challenge 2 Express the decimal .5 in base 7.

12-9 The following excerpt comes from Lewis Carroll’s Alice’s Ad-
ventures in Wonderland.

“Let me see: four times five is twelve, and four times six is
thirteen, and four times seven is—oh dear! I shall never get to
twenty at that rate!”

Do you agree or disagree with the author?

12-10 Show that, if a® 4+ b2 = ¢2, a, b, c integers, then P = abc is
divisible by 60 = 3 -4 -5,

12-11 Find the integer values of x between —10 and 15 such that
P = 3x® 4+ 7x? is the square of an integer.

Challenge What is the least value of x > 15 satisfying the given
conditions?
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12-12 Find the geometric mean of the positive divisors of the natural
number 7. (See Appendix IV.)

12-13 Show thatifP = 1-2-3: --- nandS=142+4+3+4---+n,
n a natural number, then S exactly divides P if n is odd.

12-14 By shifting the initial digit 6 of the positive integer N to the end,
we obtain a number equal to %N. Find the smallest possitle

value of N that satisfies the conditions.
Challenge Solve the problem with initial digit 8.
12-15 Find the two-digit number N (base 10) such that when it is

divided by 4 the remainder is zero, and such that all of its positive
integral powers end in the same two digits as the number.

12-16 Find a base b such that the number 321, (written in base b) is the
square of an integer written in base 10.
Challenge Find a base b such that 123, is the cube of an integer written

in base 10.

1217 G 2= D = 2 fing 82909,

—od—a)~ 3’ (a—b)c—d)
latbctd 5 (a=0)b-d),
Challenge If G+tod+a - 3 find @+b)(c+d)

12-18 Solve x(x + 1)(x + 2)(x + 3) + 1 = y? for integer values of
x and y.

Challenge Solve (x + 1)(x + 2)(x + 3)(x + 4) + 1 = yZ for integer
values of x and y.

12-19 Factor x* — 6x® + 9x% + 100 into quadratic factors with in-
tegral coefficients.
Challenge Find the quadratic factors with integral coefficients of
x* — 10x3 4+ 10x2 — 41x — 20.

12-20 Express (a2 + b2)(c2 + d?) as the sum of the squares of two
binomials in four ways.
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12-21 Observe that 1234 is not divisible by 11, but a rearrangement
(permutation) of the digits such as 1243 is divisible by 11. Find
the total number of permutations that are divisible by 11.

Challenge Find the total number of permutations of N = 12345 that
are divisible by 11.

12-22 Find all integers N with initial (leftmost) digit 6 with the property

that, when the initial digit is deleted, the resulting number is ]lg
of the original number N.

Challenge Solve the problem with initial digit 9.

12-23 Find the largest positive integer that exactly divides N = 11¥*2 4
12%%+1 where k = 0,1,2,....

Challenge 1 Find the largest positive integer exactly dividing N =
7%+2 4 82k+1 where k = 0, 1,2,....

Challenge 2 Show in general terms that N = A¥*+2 + (4 + 1)%*+!,
where k = 0, 1,2, ..., is divisible by (4 + 1) — 4.

12-24 For which positive integral values of x, if any, is the equation
x% =9k + 1, where k = 0, 1,2, ..., not satisfied?

12-25 If n, A, B, and C are positive integers, and 4 — B — C™ is
divisible by BC, express A in terms of B and C (free of n).

12-26 Prove that if ad = bc, then P = ax® + bx? + cx + d, a £ 0,
d

Challenge Try to prove the converse of this theorem.

12-27 Let R be the sum of the reciprocals of all positive factors, used
once, of N, including 1 and N, where N = 27~1(2? — 1), with
27 — 1 a prime number. Find the value of R.

12-28 Note that 180 = 32-20 = 3%-22-5 can be written as the sum
of two squares of integers, namely, 36 + 144 = 6% + 122, but
that 54 = 32-6 = 3%2-2-3 cannot be so expressed. If a, b are
integers, find the nature of the factor b such that a%- b is the
sum of two squares of integers.
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12-29 Show that b — 1 divides *~2 4+ >3 + .-+ 4+ b+ 1, and
thus show that b2 — 2b + 1 divides »*~! — 1.

13 Maxima and Minima:
Ups and Downs

Since ancient times, mathematicians have been continually fas-
cinated by the idea of maximizing and minimizing mathematical ob-
jects or quantities. There seems to be something especially irresistible
about the challenge of finding the largest rectangle that can be in-
scribed in a certain triangle or the smallest value of a certain function.
You will find a good cross-section of typical maximum-minimum
problems here.

13-1 The perimeter of a sector of a circle is 12 (units). Find the radius
so that the area of the sector is a maximum.

Challenge Solve the problem for perimeter P.

13-2 The seating capacity of an auditorium is 600. For a certain per-
formance, with the auditorium not filled to capacity, the receipts
were $330.00. Admission prices were 75¢ for adults and 25¢ for
children. If a represents the number of adults at the performance,
find the minimum value of a satisfying the given conditions.

Challenge 1 Find the value of ¢ for @ = 361, where ¢ represents the
number of children.

Challenge 2 Find the value of ¢ fora =360 + k, k =1,2,3,....
13-3 When the admission price to a ball game is 50 cents, 10,000
persons attend. For every increase of 5 cents in the admission

price, 200 fewer (than the 10,000) attend. Find the admission
price that yields the largest income.

Challenge 1 How many attend when the admission price is $1.50?

Challenge 2 Find the maximum income.
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Challenge 3 Find the admission price yielding the largest income if,
in addition to the conditions stated in the original prob-
lem, there is an additional expense of one dollar for every
100 persons in attendance.

13-4 A rectangle is inscribed in an isosceles triangle with base 2b
(inches) and height A (inches), with one side of the rectangle
lying in the base of the triangle. Let T (square inches) be the area
of the triangle, and R,, the area of the largest rectangle so
inscribed. Find the ratio R,,:T.

Challenge Change isosceles triangle to scalene triangle with base 2b
and corresponding altitude &, and solve the problem.

13-5 It can be proved that the function f(y) = ay — y* (where
b>1, a> 0, and y > 0) takes its largest value when y =

1
(g)f;:i . Use this theorem to find the maximum value of the func-

tion F = sin x sin 2x.

13-6 In the woods 12 miles north of a point B on an east-west road, a
house is located at point A. A power line is to be built to 4 from
a station at E on the road, 5 miles east of B. The line is to be built
either directly from E to A or along the road to a point P (between
E and B), and then through the woods from P to A4, whichever is
cheaper. If it costs twice as much per mile building through the
woods as it does building along the highway, find the location
of point P with respect to point B for the cheapest construction.

13-7 From a rectangular cardboard 12 by 14, an isosceles trapezoid
and a square, of side length s, are removed so that their combined
area is a maximum. Find the value of s.

Challenge Find the value of s for a combined area that is minimum.

13-8 Two equilateral triangles are to be constructed from a line seg-
ment of length L. Determine their perimeters P, and P, so that
(a) the combined area is a maximum (b) the combined area is a
minimum,.

Challenge Verify that the maximum area is twice the minimum area.

13-9 Find the least value of x* + y* subject to the restriction xZ +

y? = ¢
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Challenge Find the least value of x® 4+ y® subject to the restriction
x+y=c

13-10 Find the value of x such that § = (x — k)% + (x — k)% +
++ 4 (x — ky)? is a minimum where each k;, i = 1,2,...,n,
is a constant.

13-11 If |x] £ cand [x — x;| £ 1, find the greatest possible value of
|x12 — x2.

. ab
13-12 Show that the maximum value of F = sl where a, b

- .1
are positive numbers, is 6

13-13 Find the area of the largest trapezoid that can be inscribed in a
semicircle of radius 7.

14 Quadratic Equations: Fair and Square

Two themes can be traced in this section. There are problems whose
solution calls for solving a quadratic equation at some point. The
other problems concern a variety of relationships between the roots
(solutions) and coefficients of quadratic equations beyond the sum and
product relationships usually studied in high school algebra.

14-1 Find the real values of x such that 322>~ 7z+3 = 42?—=—6

Challenge 1 Solve the problem for 32**~77+3 - g2*~2—6

Challenge 2 Solve the problem for 42=*~7s+3 — g=?—2—6,
14-2 Let D = h% 4 3k% — 2hk, where h, k are real numbers. For
what values of Aand kis D > 0?
Challenge If D = h? — 3k? + 2hk with k and k real numbers, find
the values of A and k for which (@) D > 0 (b) D < 0.

14-3 If the roots of xZ 4 bx + ¢ = 0 are the squares of the roots of
x2 4 x + 1 = 0, find the values of b and c.
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Challenge Solve the problem so that the roots of x2 + bx + ¢ = 0
are the cubes of the roots of xZ + x + 1 = 0.

14-4 If the roots of ax? + bx + ¢ = 0, a 5« 0, are in the ratio m:n,
find an expression relating m and n to a, b, and c.

14-5 Find all values of x satisfying the pair of equations
x2—px+20=0, x2—20x+p =0.

14-6 A student, required to solve the equation xZ 4 bx + ¢ = 0,
inadvertently solves the equation x2 + cx+ b = 0; b, ¢ in-
tegers. One of the roots obtained is the same as a root of the
original equation, but the second root is m less than the second
root of the original equation. Find » and ¢ in terms of m.

14-7 If r, and ry are the roots of x2 4+ bx+c =, and S, =
”12 + "22, S1 =r+r,, and So = ”10 + ”20, prove that
S2 + bS1 + CSO = 0.

Challenge Find the relation between the roots ry, rs, and r3 and the
coefficients of a cubic equation x3 + bxZ 4+ cx + d = 0,
and then determine the value of S3 + bSs + ¢S; + dS,
where Sz =r > +r2+r® So=r2+r2+r% S =
ritre+rs, So=r® +r® + rs°
HINT: Let (x — r))(x — ra)(x — rg) = x3 + bx% 4+ cx + d.

14-8 A man sells a refrigerator for $171, gaining on the sale as many
percent (based on the cost) as the refrigerator cost, C, in dollars.
Find C.

Challenge 1 Solve the problem if the percent gain is half the value of
the new C.

Challenge 2 Solve the problem if the percent gain is half the value of
the new C, and the selling price is $170.50.

14-9 Express ¢ and s each in terms of p and r so that the equation
x* + px3 4+ gx2 + rx + s = 0 has two double roots u and v
where u may or may not equal v. (Each of the factors x — u
and x — v appears twice in the factorization of x* + px® +

gx 4+ rx 4+ s)
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Challenge1 Find y,vifp = —4and r = —4.
Challenge 2 Find u,vif p = 2and r = 2.

14-10 Let f(n) = n(n + 1) where n is a natural number. Find values
of n such that f(n + 4) = 4f(n) + 4.

Challenge 1 Is there a pair m, n such that 2f(n) + 2 = f(m) where
m=n-+4 2?7

Challenge 2 Is there a pair m, n such that 2[% n(n + 1)] = %m(m + 1)?

14-11 If one root of Ax® 4+ Bx2+ Cx+ D =0, A = 0, is the
arithmetic mean of the other two roots, express the simplest
relation between A, B, C, and D.

Challenge Find the simplest relation between the coefficients if one
root is the positive geometric mean of the other two.

14-12 If the coefficients a, b, ¢ of the equation ax% 4 bx 4+ ¢ = 0 are
odd integers, find a relation between a, b, ¢ for which the roots are
rational.

14-13 If f(x) = aox? + a1x + a3 = 0, ag < 0, and a,, az and s =
aop + a; + a; are odd numbers, prove that f(x) = 0 has no
rational root.

15 Systems of Equations:
Strictly Simultaneous

Sometimes we can ask more interesting questions about a system of
equations than “what is its solution.” In other problems here, you will
have your hands full hunting for the solution. It may be helpful to
review Cramer’s Rule before plunging in. (See Appendix VII.)

15-1 Estimate the values of the four variables in the given linear system.
Then substitute repeatedly until a definitive solution is reached.
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X1 =30+ %+ x+0)
X2 = 3O+ 0+ x4 + x)
xp =300+ x+ 140
x4=%(x2+0+l+x3)

15-2 For the system x+y+2z=a
—2x—z=5b
x+3y+5z=c
find a relation between a, b, and ¢ so that a solution exists other
thanx =0,y =0,z = 0.

15-3 Find the smallest value of p? for which the pair of equations,
@G—-pHx+2y=0
x4+ (T —-py=0
has a solution other than x = y = 0, and find the ratio x:y
for this value of p2.

15-4 If Py = 2x* 4 3x% — 4x%2 4 5x + 3,
Po=x®4+2x2 —3x+1,
Py = x*4+2x%— x2 4 x+ 2,
and aP; + bP, + cP3 = 0, find the value of a + b + ¢, where
abc = 0.

15-5 If f1=3x—y+ 224w,
fo=2x43y—z+ 2w,
fa=5x—9 + 8z —w,

find numerical values of a, b, ¢ so that af, + bfs + ¢f3 = 0.

15-6 Find the common solutions of the set of equations
x—2xy+2y = —1
x—xy+y=0.
Challenge Solve the problem replacing x — xy + y =0 by x —
xy + y = 1, and verify the result geometrically.
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15-7 Solve the system 3x + 4y + 5z = q,
4x 4+ 5y + 6z = b,
S5x+ 6y+7z=c

a, b, c arbitrary real numbers, subject to the restriction x > 0,
y=>20,z>0.

15-8 For a class of N students, 15 < N < 30, the following data were
obtained from a test on which 65 or above is passing: the range
of marks was from 30 to 90; the average for all was 66, the average
for those passing was 71, and the average for those failing was 56.
Based on a minor flaw in the wording of a problem, an upward
adjustment of 5 points was made for all. Now the average mark
of those passing became 79, and of those failing, 47. Find the
number Ny of students who passed originally, and the number
N of those passing after adjustment, and N.

16 Algebra and Geometry:
Often the Twain Shall Meet

Many mathematical ideas have both an algebraic aspect and a
geometric aspect. Several of these ideas are explored here, with the
emphasis on analytic geometry and transformations.

16-1 Curve I is the set of points (x,y) such that x =u+ 1, y =
—2u + 3, u a real number. Curve II is the set of points (x, y)
such that x = —2v + 2, y = 40 + 1, v a real number. Find
the number of common points.

Challenge 1 Change y = —2u + 3 to y = —2u + 1 and solve the
problem.

Challenge2 Change x=u+4+1 to x=2u+1 and solve the
problem.

16-2 Let the altitudes of equilateral triangle ABC be A4,, BB;, and
CC,, with intersection point H. Let p represent a counterclock-
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wise rotation of the triangle in its plane through 120° about
point H. Let g represent a similar rotation through 240°. Let r

represent a rotation of the triangle through 180° about line AA4,.

And let s, ¢ represent similar rotations about lines FB,, ’C'_C'h
respectively.

If we define p * r to mean “first perform rotation p and then
perform rotation r,” find a simpler expression for (g * r) * q;
that is, rotation q followed by rotation r, and this resulting rota-
tion followed by rotation gq.

Challenge 1 Determine whether these rotations are commutative;

that is, for example, whether p * r = r * p.

Challenge 2 Determine whether these rotations are associative; that

is, for example, whether (g * r)* p = g * (r * p).

16-3 Fig. 16-3 represents a transformation of the segment AB onto

16-4

segment A’B’, and of BC onto B'C’. The points of AB go into
points of 4’B’ by parallel projections (parallel to A4”). The
points of BC go into points of B'C’ by projections through the
fixed point P.

AL lC Xy Xq B8

16-3

The distances from the left vertical line AM are zero for
point A, 3 for point B, 4 for point C, 5 for point B’, and 2 for
point 4’(C"). Designate the distances of the points on 4C from
AM as x, and the distances of their projections on A’B’(C'B’)
from AM as f. Find the values of r and s of the transformation
functions f =rx+s @ for0<x<3 () for3<x< 4.

Given the three equations (1) 7x — 12y = 42 (2) 7x + 20y = 98
(3) 21x + 12y = m, find the value(s) of m for which the three
lines form a triangle of zero area.
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Challenge 1 Solve the problem generally for the system of equations
() aix + by = ¢1 (2) azx + boy = ¢c3 (3) asx +
b3y = m with a1b2 - a2b1 #= 0.

Challenge 2 Solve the problem for (1) 4x — 6y = 21, (2)2x — 3y =
21, 3) 21x + 12y = m, and explain the “weird” result.

16-5 Describe the graph of v/x2 + y2 = y.
Challenge Describe the graph of v/x2 + y2 = —y.

16-6 Transform x2 — 3x — 5 = 0 into an equation of the form
aX? + b = 0 where a and b are integers.

Challenge Verify this transformation as a translation of the parabola

y = x% — 3x — 5 in the xy-plane, a distance of l% units
to the left.

16-7 1t is required to transform 2x,%2 — 4x;x, + 3x3% into an ex-
pression of the type a1y;2 + asps%. Using the transformation
formulas y; = x; + cxz and y; = x,, determine the values of
ai and Qas.

Challenge 1 Investigate the case when the transformation formulas
are y; = X1 and Yo = dx1 + Xxs.

Challenge 2 Investigate the case when the transformation formulas
are y; = x; + cx and y; = dx; + x,.

16-8 N.B. and S.B. are, respectively, the north and south banks of a
river with a uniform width of one mile. (See Fig. 16-8.) Town A
is 3 miles north of N.B., town B is 5 miles south of S.B. and
15 miles east of A. If crossing at the river banks is only at right
angles to the banks, find the length of the shortest path from
A to B.

ho 1—red

s8 U

16-8



50 PROBLEMS

Challenge If the rate of land travel is uniformly 8 m.p.h,, and the
rowing rate on the river 1s 1 m.p h. (in still water) with a
west to east current of 1 m. p h., find the shortest time it
takes to go from 4 to B.

16-9 Let the vertices of a triangle be (0, 0), (x, 0), and (hx, mx), m a
positive constant and 0 < & < . Let a curve C be such that
the y-coordinates of its points are numerically equal to the areas
of the triangles for the values of 4 designated. Write the equation
of curve C.

Challenge Let the vertices of a triangle be (0,0) and (x, 0), and
(§' mx) , m a positive constant. Let a curve C be such
that the y-coordinates of its points are numerically equal

to the perimeters of the triangles thus formed. Write the
equation of curve C.

16-10 Each member of the family of parabolas y = ax? + 2x + 3 has
a maximum or a minimum point dependent upon the value of a.
Find an equation of the locus of the maxima and minima for all
possible values of a.

16-11 Let A4, B, and C be three distinct points in a plane such that
AB = X > 0, AC = 24B, and AB + BC = AC + 2. Find the
values of X for which the three points may be the vertices of a
triangle.

Challenge Find the value(s) of x for which the triangle is a right
triangle.

16-12 The area of a given rectangle is 450 square inches. If the area
remains the same when 4 inches are added to the width and A
inches are subtracted from the length, find the new dimensions.

Challenge 1 Solve the problem when 12 inches are added to the width,
and 10 inches subtracted from the length.

Challenge 2 Let the original width, W, be increased by & inches, and
let the original length, L, be decreased by %h inches.

Express the new dimensions in terms of the original
dimensions.
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16-13 Show that if the lengths of the sides of a triangle are represented
by a, b, and ¢, a necessary and sufficient condition for the triangle
to be equilateral is the equality a®> + b2 + ¢2 = ab + bc + ca.
That is, if the triangle is equilateral, then a® + b% 4 ¢2 =
ab + bc + ca, and if a® + b% + ¢2 = ab + bc + ca, then
the triangle is equilateral.

16-14 Select point P in side 4B of triangle 4BC so that P is between 4
and the midpoint of AB. Draw_the polygon (not convex)

PP, | 4C, P.Ps | 4B, P5P¢ || CB, w1th Py, Psin CB P,, Py m
AC, P3, Pg in AB. Show that point Pg coincides with point P.

Challenge 1 Investigate the case when P is the midpoint of 4B.

Challenge 2 Investigate the case when P is exterior to 4B and P4 <
AB.

16-15 Let P\P,P3...P,P, be a regular n-gon (that is, an n-sided
polygon) inscribed in a circle with radius 1 and center at the
origin such that the coordinates of P, are (1,0). Let S =
(P1P2)2 + (P1P3)2 + -+ (Pan)z, Find the ratio S:n.

17 Sequences and Series:
Progression Procession

The problems in this section cover the territory between the usual
study of sequences and series in high school and the calculus. The
journey begins with unfamiliar facets of the familiar arithmetic and
geometric sequences and ends with infinite series, touching on such
things as recursive sequences, polynomial approximations, finite series,
and limits along the way.

17-1 Find the last two digits of N = 1110 — 1,
Challenge 1 Find the last two digits of N = 1110 4 1.
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Challenge 2 Find the last two digits of N = 1110 — 9,

17-2 Give a recursive definition of the sequence {L} , n a natural

4n
number.

Challenge 1 Write a recursive definition of the sequence {31—"} s
n=12....

. . " 1
Challenge 2 Write a recursive definition of the sequence {3” — 1} ’
n=12....

17-3 A perfectly elastic ball is dropped from height 4 feet. It strikes

a perfectly elastic surface \/-l—i seconds later. It rebounds to a

height rh (feet), 0 < r < 1, to begin a similar bounce a second
time, then a third time, and so forth. Find (a) the total distance D
(feet) traveled and (b) the total time T (seconds) to travel D feet.

Challenge From a pin O, two elastic spheres 4 and B are suspended
with strings 1 foot long. Sphere A is brought to a horizontal
position 1 foot from O and released. It strikes B, imparting
motion to it, at the same time losing its own motion. B then
falls and strikes A4, imparting motion to it, at the same
time losing its own motion. If with each impact the distance
traveled is r times the preceding falling motion, 0 < » < 1,
find the total distances, D4 and Dp, traveled by 4 and B,
respectively.

17-4 For the arithmetic sequence a,, as, ..., a;e it is known that
a; + ag = a;¢. Find each subsequence of three terms that forms
a geometric sequence.

Challenge Find (a) each geometric subsequence of four terms, and
(b) each geometric subsequence of five terms.

17-5 The sum of n terms of an arithmetic series is 216. The value of
the first term is n and the value of the n-th term is 2n. Find the
common difference, d.

Challenge 1 Change the value of the n-th term to 11n and solve the
problem.

Challenge 2 There is one more case where d is an integer. Find n
and d.
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17-6 Find the sum of n terms of the arithmetic series whose first term
is the sum of the first n natural numbers and whose common
difference is n.

Challenge Prove that the sum of n terms of the arithmetic series, whose
first term is the sum of the first » odd natural numbers and
whose common difference is n, is equal to the sum of n
terms of the arithmetic series whose first term is the sum
of the first n natural numbers and whose common differ-
ence is 2n.

17-7 In a given arithmetic sequence the r-th term is s and the s-th term
is r, r # 5. Find the (r + s)-th term.

Challenge If S, = 3 (r + )¢ + s — 1), find n.

17-8 Define the triangular number T, as T, = %n(n + 1), where

n=20,1,2,...,n,...and the square number S, as S, = n?

wheren =0,1,2,...,n,....Prove @) Thy1 = Tn +n + 1
(b) Sn+l = Sn + 2n + 1 (C) Sn+1 = Tn+1 + T, (d) Sn =
2T, — n.

17-9 Beginning with the progression a, ar, ar?, ar®, ..., ar* "1, ...,
form a new progression by taking for its terms the differences of
successive terms of the given progression, to wit, ar — a, ar® —
ar, .. .. Find the values of @ and r for which the new progression

is identical with the original.

17-10 The interior angles of a convex non-equiangular polygon of 9
sides are in arithmetic progression. Find the least positive integer
that limits the upper value of the common difference between the
measures of the angles.

Challenge 1 Find the least integer when there are 12 sides instead of 9.

Challenge 2 1t is not much more difficult to solve the problem for the
general case of n sides. Try it.

17-11 The division of %-i-r , where r < s, that is, where r is very much

smaller in magnitude than s, is not exact, and is unending. If,
however, we agree to stop at a given point, the quotient is a
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polynomial in f whose degree depends upon the stopping point.
Find a second-degree polynomial in £ best approximating the

. s
function Pt L s.
17-12 When P, (x) = 1 + x + x2 + - -+ 4 x™ is used to approximate
the function P(x) = 1 + x + xZ + -+ 4+ x" 4 --- when x =

% (see Problem 9-11), find the smallest integer » such that
|P(x) — P(x)| < .001.

Challenge 1 Solve the problem for x = ! and x =

1
2 8

Challenge 2 Solve the problem for x = —-;1; y X = —% ,and x = —% .

Challenge 3 Show that the values of n are large for those values of x
that are toward the middle of the interval (—1, +1).

17-13 Find the numerical value of S such that S = ay + a, + a5 +
4 ap+ ---whereag = 1,4, = r*,and Gnyy = Gn — Gny1.

Challenge Solve the problem with a¢ = 2.

17-14 A group of men working together at the same rate can finish a job
in 45 hours. However, the men report to work singly at equal
intervals over a period of time. Once on the job, however, each
man stays until the job is finished. If the first man works five
times as many hours as the last man, find the number of hours
the first man works.

Challenge What is the number of men?

17-15 A sequence of positive terms A;, Ay, ..., Ay, ... satisfies the
recursive relation 4,,, = 3(;_'_;:")- For what values of A4, is
the sequence monotone decreasinng (e, 41 24322
An 2 )

Challenge 1 Write several terms of the sequence when 4; = /3.

Challenge 2 Write several terms of the sequence when 4; = 2.

Challenge 3 Verify that the sequence is not monotone decreasing when
1
Al = 15 ‘
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1716 IfS=n® + (n + 13 + (n + 2 + - - - + (2n)3, n a positive
integer, find S in closed form (that is, find a formula for ),

giventhat 12 + 23 4+ -+ - 4+ n3 = :—‘nz(n + 12
Challenge Find S where S = 13 + 3% + 53 4 -+« 4+ (2n — D)3,

17-17 If S(k) = 1 + 2 + 3 4+ -+ - + k, express mn in terms of S(m),
S(n), and S(m + n).

Challenge Verify the formula for @Qym = n(b)m = 2n (¢) m = kn.

17-18 Each a; of the arithmetic sequence ay, a;, 25, a3, a4 is a positive
integer. In the sequence there is a pair of consecutive terms whose
squares differ by 399. Find the largest term of the sequence.

17-19 Let S; = 1 + cos?x + cos* x + - ;let S, = 1 + sin?x +
sin*x 4 - ;letSg=1+sin?xcos?x +sin*xcostx+---,
with 0 < x < g Show that S; + S; = S5, and that S; +
Sy + Sz = $152953.

17-20 A square array of natural numbers is formed as shown. Find the

sum of the elements in (a) the j-th column (b) the i-th row (c) the
principal diagonal (upper left corner to lower right corner).

1 2 3 . . . n
n+41 n+2 . . . . 2n

2n+41 2n+ 2

(n—l')n+l (n—l.)n+2

17-21 LetS = 2x + 2x3 4+ 2x5 + -+ - 4+ 2x%*~1 4 - -+ [ where |x| <
1, be written as 1—1, - é Express P and Q as polynomials in x
with integer coefficients.

-

Challenge 1 Evaluate S when x = % and when x =

Challenge2 Find Pand Qif S = 2 + 2x2 + 2x* 4+ - - + 4 2x*
+ -+, where [x] < l,andSiswrittenas},+é-
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124224 ... 4 n2
n3

17-22 Let I = lim

n—»e

fraction as n increases without bound; find the value of 1.

, that is, the limiting value of the

2 2 2 2 . .
17-23 Let S = 1_2+2—3+ﬁ++m Find a simple
formula for S.
Challenge ~Find the values of lim S; that is, 75 + 305 + 325 + ***-

17-24 An endless series of rectangles is constructed on the curve 1
each with width 1 and helght + P’ =1273,.... Fmd
the total area of the rectangles.

1

+ m,wheren= 1,

1 1
1725 Let S = 15 + 705 +

2,.... Find a simple formula for S, in terms of n.
. 1 1 1
Challenge 1 Find S, = 13 + 3—3+ +m,where
n=12....
Challenge 2 Can you now predict the formula for
1 1

Sn=ﬁ+ﬂ+---+ s,wheren=1,2,...7

1
nn + 1)
17-26 Let S = a; + a2 + - -+ 4+ an_1 + a, be a geometric series with

commonratior,r # 0, r > 1. LetT = by + bs + - + bny
be the series such that b; is the arithmetic mean (average) of
a; and ajyq, j=1,2,3,...,n Express T in terms of a;, ay,
and ».

17-27 The sum of a number and its reciprocal is 1. Find the sum of the
n-th power of the number and the n-th power of the reciprocal.

17-28 Alpha travels uniformly 20 miles a day. Beta, starting from the
same point three days later to overtake Alpha, travels at a uniform
rate of 15 miles the first day, at a uniform rate of 19 miles the
second day, and so forth in arithmetic progression. If n represents
the number of days Alpha has traveled when Beta overtakes him,
find n (not necessarily an integer).

17-29 Find a closed-form expression for S,, where S, =124
2:2243-23 4 ..+ 4+ n-2"; that is, find a simple formula
for S.
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Challenge 1 Find S, where S,
+ n-3"

Challenge2 Find S, where S"=1-4+4+2-424+3-4%4 ...
+ n- 4"

1-342-3243-33 4-..

Challenge 3 By inspection, find S, where S, =1-5+2-5%2 4
3-53 4 .- 4 n-5n,

1 1 1
=1—- ~2—2+...+-—+..

r2

17-30 Show that 3 < 2 where Y. -
r=1 r=1

17-31 Express S, in terms of n, where S, = 1-11 4 2-21 4 3-3!
+:-+n-n.

18 Logarithms: A Power Play

Logarithms were invented by John Napier in the early seventeenth
century to simplify arithmetic computation. The advent of electronic
computers in recent years has almost eliminated this practical need.
But logarithms and logarithmic functions still have considerable
theoretical importance. It’s the theory that counts in these problems.

18-1 Find the real values of x such that x log; 3 = logyo 3.
Challenge Find the real values of y such that y log;o 3 = log, 3.

18-2 Find the real values of x for which (a) F is real (b) F is positive,

where F = logazx+ ,a>0,a 1.

Challenge Change 2x 4+ 4 to 2x — 4 and solve the problem.

18-3 If f is a function of x only and g is a function of y only, determine
f and g such that log f + logg = log (1 + 2z) where z =
x4+ xy+ y.

Challenge Solve the problem when log f + logg = log (1 — 2)
where z = x — xy + y.
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18-4 If (ax)'°2® = (bx)'°%%, a, b positive, a = b, a = 1, b = 1, and
the logarithmic base is the same throughout, express x in terms
of a and b.

18-5 Find a simple formula for S, = ﬁﬁ + l; + -+

1 og;;N
loga N’ N> 1

Challenge Find a simple formula for T, = log: N logla N + logl. N

1
T logaa N N> 1

19 Combinations and Probability:
Choices and Chances

Handshakes at a party, a Ping-pong match, and a secret scientific
project are among the settings for these problems, which involve
(surprise!) counting choices or figuring chances.

19-1 Suppose that a boy remembers all but the last digit of his friend’s
telephone number. He decides to choose the last digit at random
in an attempt to reach him. If he has only two dimes in his pocket
(the price of a call is 10¢), find the probability that he dials the
right number before running out of money.

Challenge Suppose that the boy remembers all but the last two digits,
but he does know that their sum is 15. Find the probability
of dialing correctly if only two dimes are available.

19-2 In a certain town there are 10,000 bicycles, each of which is
assigned a license number from 1 to 10,000. No two bicycles have
the same number. Find the probability that the number on the
first bicycle one encounters will not have any 8’s among its digits.

Challenge Find the probability that the number on the first bicycle
one encounters will have neither an 8 nor a 7 among its
digits.
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19-3 Suppose Flash and Streak are equally strong Ping-pong players.
Is it more probable that Flash will beat Streak in 3 games out of 4,
or in 5 games out of 8?

Challenge Suppose Flash is “twice as good” as Streak in the sense
that, for many games, he wins twice as often as Streak. Is
it more probable that Flash beats Streak in 3 games out of 5,
or in 5 games out of 77

19-4 Show that in a group of seven people it is impossible for each
person to know reciprocally only three other persons.

Challenge In a group of nine people, is it possible for each person to
know reciprocally only five other persons?

19-5 At the conclusion of a party, a total of 28 handshakes was ex-
changed. Assuming that each guest was equally polite toward all
the others, that is, each guest shook hands with each of the others,
find the number of guests, n, at the party.

Challenge 1 Solve the problem for 36 handshakes.
Challenge 2 Solve the problem for 32 handshakes.

19-6 A section of a city is laid out in square blocks. In one direction
the streets are El, E2, ..., E7, and perpendicular to these are
the streets N1, N2, ..., N6. Find the number of paths, each
11 blocks long, in going from the corner of El1 and N1 to the
corner of E7 and N6.

19-7 A person, starting with 64 cents, makes 6 bets, winning three
times and losing three times. The wins and losses come in random
order, and each wager is for half the money remaining at the time
the wager is made. If the chance for a win equals the chance for
a loss, find the final result.

19-8 A committee of r people, planning a meeting, devise a method of
telephoning s people each and asking each of these to telephone
t new people. The method devised is such that no person is called
more than once. Find the number of people, N, who are aware
of the meeting.

19-9 Assume there are six line segments, three forming the sides of an
equilateral triangle and the other three joining the vertices of the
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triangle to the center of the inscribed circle. It is required that the
six segments be colored so that any two with a common point
must have different colors. You may use any or all of 4 colors
available. Find the number of different ways to do this.

19-10 A set of six points is such that each point is joined by either a
blue string or a red string to each of the other five. Show that
there exists at least one triangle completely blue or completely
red. (See Fig. 19-10).

Py
Py

) 19-10

19-11 Each face of a cube is to be painted a different color, and six
colors of paint are available. If two colorings are considered the
same when one can be obtained from the other by rotating the
cube, find the number of different ways the cube can be painted.
[If the center of the cube is at the origin (0, 0, 0) the rotations
are about the x-axis, or the y-axis, or the z-axis through multiples
of 90°.]

19-12 An 8 X 8 checkerboard is placed with its corners at (0, 0),
(8, 0), (0, 8), and (8, 8). Find the number of distinguishable non-
square rectangles, with corners at points with integer coordinates,
that can be counted on the checkerboard.

19-13 A group of 11 scientists are working on a secret project, the
materials of which are kept in a safe. In order to permit the
opening of the safe only when a majority of the group is present,
the safe is provided with a number of different locks, and each
scientist is given the keys to certain locks. Find the number of
locks, nj, required, and the number of keys, ng, each scientist
must have.
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20 An Algebraic Potpourri

Here is an assortment of problems containing a few new ideas and
a continuation of ideas from earlier sections.

20-1 If we define (2n + 1)! to mean the product (I)(2)(3)...(2n + 1)
and (2n + D! to mean the product (1)(3)(5)... (2n + 1), ex-
press (2n 4+ 1)!! in terms of 2n + 1)!.

20-2 If @, b, c are three consecutive odd integers such thata < b < ¢,
find the value of a® — 2b% 4 c2.

Challenge 1 How is the result changed if ¢ < b < a?

Challenge 2 How is the result changed if three consecutive even
integers are used?

20-3 At the endpoints 4, B of a fixed segment of length L, lines are
drawn meeting in C and making angles «, 2a, respectively, with
the given segment. Let D be the foot of altitude CD and let x
represent the length of AD. Find the limiting value of x as «

decreases towards zero; that is, find lim x.
a—0

Challenge Note that, when the original angles are a, 2, the limiting
value of x is %L. Can you predict the limiting value of

x when the original angles are a, 3a?

20-4 Find the set of integers n > 1 for whicha/n — 1 ++v/n+ 1 is
rational.

Challenge 1 Solve the problem for \/n — k + v/n + k where k is
an integer such that 2 < k < 8.

Challenge 2 For what positive integer values of nis /4n — 1 rational?

20-5 The angles of a triangle ABC are such that sin B 4 sin C =
2 sin A. Find the value of tan g tan g .

Challenge Show that if sin B — sin C = 2sin 4 for triangle ABC,
then tan gcotg = —3.
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Tx® — x2 — x —

1. . .
Y —1)  into the sum of fractions with

20-6 Decompose F =

constant numerators.

Challenge Change the factor x — 1 in the denominator to x + 1 and
solve the problem.

20-7 On a transcontinental airliner there are 9 boys, 5 American chil-
dren, 9 men, 7 foreign boys, 14 Americans, 6 American males, and
7 foreign females. Find the number of people on the airliner.

20-8 If a and b are positive integers and b is not the square of an
integer, find the relation between a and b so that the sum of
a + /b and its reciprocal is integral.

Challenge Solve the problem so that the sum is rational but not
integral.

20-9 Find the simplest form for R = /1 + v/=3 + /1 — v/—3.
Challenge 1 Simplify S = v/1 +vV—-3 — /1 —/-3.
Challenge 2 Simplify T’ = Va + /—b £ V/a — \/—b, where a,

b are positive integers.

20-10 Observe that the set {1, 2, 3, 4} can be partitioned into subsets
T:1{4,1} and T.{3, 2} so that the subsets have no element in
common, and the sum of the elements in T equals the sum.of
the elements in Tz. This cannot be done for the set {1, 2, 3, 4, 5}
or the set {l, 2, 3, 4, 5, 6}. For what values of n can a subset of
the natural numbers S, = {1, 2, 3, ..., n} be so partitioned?

20-11 Suppose it is known that the weight of a medallion, X ounces, is
represented by one of the integers 1, 2, 3, ..., N. You have
available a balance and two different weights, each with an in-
tegral number of ounces, represented by W, and W,. Let S =
N + W, 4+ W,. Find the value of S for the largest possible
value of N that can be determined with the given conditions.

(For this problem we are indebted to Professor M. 1. Aissen,
Fordham University.)

20-12 If M is the midpoint of line segment 4B, and point P is between
M and B, and point Q is beyond B such that QP2 = QA - OB,
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show that, with the proper choice of units, the length of MP
equals the smaller root of x2 — 10x + 4 = 0.

NOTE: A, M, B, P, and Q are collinear.

20-13 InFig. 20-13, consider the lattice where R; is the i-th row and

C; is the j-th column, i, j, = 1, 2, 3, ..., in which all the entries
are natural numbers. Find the row and column for the entry
1036.

Challenge Find the row and column for the entry 212.

C, C C o e o
R |1
Rl 2 3
R4 5 6
e e o o o
el e o o o o
o/ e o o o o o

20-13
20-14 Express P(c) = c® 4 10c* + 25¢% as a polynomial of least
positive degree when c is a root of x® + 3x2 + 4 = 0.

Challenge By inspection solve the problem when +25¢2 is changed
to —25¢2.

20-15 Let S = 2o t blx1+_;. T ro+ rx—+ -+ r.x"bean

identity in x. Express r, in terms of the given b’s.

Challenge Find the coefficient of x* when S(x) = 1 + 2x + 3x% +
«-+ 4+ (n + Dx™ is divided by 1 — x.

20-16 Find the numerical value of the infinite product P whose factors
3
are of the formns—l,wheren =23,4,....
n® +1
20-17 Express F = — 22—~ with a rational denominat
- xpress F = {5557 with a rational denominator.

Challenge Express F = T+ v+ v with a rational denominator.
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20-18 Starting with the line segment from 0 to 1 (including both
endpoints), remove the open middle third; that is, points % and %
of the middle third remain. Next remove the open middle thirds

1

9

2 7 8 .
+ 3 g+ g Femain along
e 1 2 . .
with 3 and - Then remove the open middle thirds of the four

of the two remaining segments (points
segments remaining, and so on endlessly. Show that one of the

remaining points is }1 .

20-19 Write a formula that can be used to calculate the n-th digit a,
of N = .01001000100001 ..., where all the digits are either 0
or 1, and where each succeeding block has one more zero than
the previous block.

Challenge Find a,, the n-th digit, of M = .101001000100001 . . ..
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1. Posers: Innocent and Sophisticated

1-1 Suppose there are 6 pairs of blue socks all alike, and 6 pairs of
black socks all alike, scrambled in a drawer. How many socks
must be drawn out, all at once (in the dark), to be certain of getting
a matching pair?

Imagine two bins, the first marked “blue,” the second marked
“black.” If the first sock drawn is blue, assign it to the first bin;
if black, assign it to the second bin. Do the same with the second
sock drawn. If one of the bins has two socks, you have a matching
pair. If not, there is one sock in each bin. When a third sock is
drawn, it must go in one or the other bin, thus giving a matching
pair. Therefore, at most, 3 socks must be drawn out.

Challenge 1 Suppose the drawer contains 3 black pairs of socks, T green
pairs, and 4 blue pairs, scrambled. How many socks must
be drawn out, all at once (in the dark), to be certain of
getting a matching pair?

Follow the pattern of reasoning in Problem 1-1. The
answer is 4.

Challenge 2 Suppose there are 6 different pairs of cuff links scrambled
in a box. How many links must be drawn out, all at once
(in the dark), to be certain of getting a matching pair?

Follow the pattern of reasoning above. The answer is 7.

1-2 Find five positive whole numbers a, b, ¢, d, e such that there is no
subset with a sum divisible by 5.
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Difficult as this problem seems, it yields to an easy solution if
you ask yourself the right questions!

What are the possible non-zero remainders when a positive
integer is divided by 5? They are 1, 2, 3, 4, which you may think
of as associated with bin 1, bin 2, bin 3, and bin 4, respectively.
(See solution 1-1.)

Consider the five subsets {a}, {a, b}, {a, b, ¢}, {a,b,c,d},
{a, b, ¢, d, e}, and the respective sums of the elements in these
subsets. When these sums are divided by 5, there are at most
four different non-zero remainders. (Why are we not concerned
with a zero remainder?) Therefore, at least two of these five sums,
say s and 55, have the same remainder r, where ris 1 or 2 or 3
or 4, so that we may write s, = Sm <+ r and s5 = 5n 4+ »r,
where m, n are integers. It follows thats; — s = 5m — 5n = 5p,
where p = m — n; that is, s5 — s, is exactly divisible by 5. If
ss=a+b+c+d+eandss=a+ b, thenc+d+eis
exactly divisible by 5. Hence, the sum of the elements in at least
one subset of any five positive numbers is divisible by 5.

The method used for solving Problems 1-1, 1-2, 1-3, and 1-4
is aptly named the Pigeon-Hole Principle.

A multiple dwelling has 50 letter boxes. If 101 pieces of mail are
correctly delivered and boxed, show that there is at least one letter
box with 3 or more pieces of mail.

If 100 letters are distributed evenly among the 50 letter boxes,
each box will contain 2 letters. When the 101st letter is put into
a box, that box will contain 3 letters.

Challenge What conclusion follows if there are

(a) 102 pieces of mail
(®) 150 pieces of mail
(c) 151 pieces of mail?

(a) At least one box contains 3 or more letters.
(b) At least one box contains 3 or more letters.
(c) At least one box contains 4 or more letters.

1-4 Assume that at least one of a, and b, has property P, and at least

one of a; and by has property P, and at least one of a3 and b has
property P. Prove that at least two of a,, a,, a3, or at least two
of by, bz, by have property P.
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PROOF 1: (Pigeon-Hole Principle) Use two pigeon holes or boxes
labeled P and ~P, where ~P means *“not-P.” The possibilities are
as follows: Box P contains @; or b; or both, while box ~P
contains g, or b, or neither. Similarly, box P contains a; or b or
both, and a3 or bz or both. Box P, therefore, contains one of the
following combinations:

ay, as, as; ay, ag, bs; aiy, az, az, bz; ay, ba, as; ay, ag, be, bs;

and so forth. Since P must contain at least three elements, at
least two must be from the a’s or at least two must be from the 4’s.

PROOF I1: (Partitions) Assume that at most one of a,, a., a3, and
at most one of by, by, b3 have property P. Then, by simple addi-
tion, at most 2 of the 6 items have property P. This contradicts
the given information which implies that at least 3 of the 6 items
have property P. Hence, more¢ than one of a,, a,, az, or more
than one of b,, by, b3, have property P.

This reasoning is equivalent to the reasoning based on
partitioning the numeral 3. Since 3=34+0=2+1=1+4
2 = 0 4+ 3, we must have either 3 of the a’s, or 2 of the a’s and
1 of the b’s, or 1 of the a’s and 2 of the b’s, or 3 of the b’s with
property P.

PROOF 111: (Binomial Theorem) Let a;, i = 1, 2, 3, represent one
of the three given a’s, and similarly for b,. Since (a; + b,)% =
a;® + 3a;%b; + 3a;b;% + b;® (see Appendix VI), then either the
3 a’s or the 3 b’s have property P, or2a’sand 1 b, or 1 @ and 2
b’s have property P.

An airplane flies round trip a distance of L miles each way. The
velocity with head wind is 160 m.p.h., while the velocity with tail
wind is 240 m.p.h. What is the average speed for the round trip ?

The temptation is to say that the average speed is % (160 + 240) =

200 m.p.h. This is incorrect because the flying times are not the
same for each leg of the trip.

Start with the basic formula R X T = D, where R is the
average speed (m.p.h.), T is the total time (hours), and D is the

total distance (miles). Letting Ty and T, be the times for the legs
L

of the trip, we have T, = % and T, = 240"
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L L 1 .
Therefore, T =T, + T, = 160 + 240 = L(9—6). Since the
total distance is 2L, R = 2[1’ = 192 m.p.h. The result is the
L _—
6
Harmonic Mean between the two velocities. (See Appendix IV.)
. _ 2(160)(240)
(i.e., here HM. = 160 + 290 = 192 m.p.h.)

Assume that the trains between New York and Washington leave
each city every hour on the hour. On its run from Washington to
New York, a train will meet n trains going in the opposite direction.
If the one-way trip in either direction requires four hours exactly,
what is the value of n?

At the moment the train leaves Washington, say 2 p.M., the train
that left New York at 10 A.M. is pulling into the station. When it
reaches New York at 6 p.M., a train is leaving New York for
Washington. In all, it meets 9 trains coming from New York; to
wit, those that left New York at 10, 11, 12, 1, 2, 3, 4, 5, and 6.

A freight train one mile long is traveling at a steady speed of
20 miles per hour. It enters a tunnel one mile long at 1 p.M. At
what time does the rear of the train emerge from the tunnel?

To clear the tunnel, the train must travel a distance of 2 miles,
the length of the tunnel plus the length of the train. At 20 m.p.h.,
the train travels 1 mile in 3 minutes, and 2 miles in 6 minutes.
The rear of the train emerges at 1:06 p.M.

A watch is stopped for 15 minutes every hour on the hour. How
many actual hours elapse during the interval the watch shows 12
noon to 12 midnight ?

The total elapsed time is 12 plus the number of hours lost; that is,
12+ 11(3) = 14} (hours)

Challenge 2 Between 12 noon and 12 midnight, a watch is stopped for

1 minute at the end of the first full hour, for 2 minutes at
the end of the second full hour, for 3 minutes at the end
of the third full hour, and so forth for the remaining full
hours. What is the true time when this watch shows 12
midnight ?
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The total elapsed time, in hours, is 12 4 6LO (% -11- 12) =
1355 (See Appendix VIL) Therefore, the true time is
1:06 A.M.

The last three digits of a number N are x25. For how many values
of x can N be the square of an integer?

Let M be such that M2 = N. Since the last two digits of N are
25, M terminates in 5. If M = 5, x = 0.

If x = 0, then M has at least two digits. When the tens’ digit
of Mis 1, 3,6, or 8, then x = 2. When the tens’ digit of M is 2
or 7, then x = 6. When the tens’ digit of M is 4, 5, or 9, then
x = 0. In all, there are three possible values for x, namely 0,
2, or 6.

A man born in the eighteenth century was x years old in the year x*.
How old was he in 1776? (Make no correction for calendric
changes.)

In the interval 1700-1800, the only square of an integer is 1764 =
422, Therefore, the year of his birth was 1764 — 42 = 1722.
Hence, in 1776, he was 1776 — 1722 = 54 years old.

To conserve the contents of a 16 oz. bottle of tonic, a castaway
adopts the following procedure. On the first day he drinks 1 oz.
of tonic, and then refills the bottle with water; on the second day
he drinks 2 oz. of the mixture, and then refills the bottle with water;
on the third day he drinks 3 oz. of the mixture, and again refills
the bottle with water. The procedure is continued for succeeding
days until the bottle is empty. How many ounces of water does he
thus drink ?

It is very easy to get bogged down in a problem like this. You
must resist the urge to find the daily ratios of tonic to water, or
of water to mixture. These are difficult to find, and unnecessary!

The essential clue is in the total number of ounces of water
added during the drinking period.

On the first day, 1 oz. of water is added, on the fifteenth day,
15 oz. of water are added. (Explain why none was added on the
sixteenth day.) The total is, therefore, 1 + 2 + ---+ 15 =

3(15)(16) = 120 0z. (See Appendix VIL)
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1-12 Which yields a larger amount with the same starting salary:

Plan I, with four annual increases of $100 each, or
Plan II, with two biennial increases of $200 each?

Let A (dollars) be the starting salary. Under Plan I the earnings
by the end of the fifth year are

A+ (4 +100) + (4 + 200) + (4 + 300) + (4 + 400)
= 54 + 1000.

Under Plan II the earnings for the same period are
A+ A+ (A4 200)+ (4 + 200) + (A4 + 400) = 54 + 800.
Plan I yields $200 more.

1-13 Assuming that in a group of n people any acquaintances are mutual,
prove that there are two persons with the same number of ac-
quaintances.

PROOF: For every person in the group, the number of acquaint-
ances is either 0, or 1, or 2, or ..., orn — 1. Let us first assume
that no two persons have the same number of acquaintances, so
that each of the n numbers, 0 to n — 1, is represented. But since
the presence of 0 means that there is a person acquainted with
no one, and the presence of n — 1 means that there is a person
acquainted with everyone, then our assumption that no two
persons have the same number of acquaintances leads to a con-
tradiction. This assumption is untenable. We are forced to con-
clude that there are two persons with the same number of
acquaintances.

1-14 The smallest of n consecutive integers is j. Represent in terms of j
(a) the largest integer L (b) the middle integer M.

@L=j+n—1@®M=j+"5",ifnisodd If nis even,
there is no unique middle integer. We can designate either

j+ '—21 — lorj+ '—21 as middle integers, if n is even.

1-15 We define the symbol |X| to mean the value x if x > 0, and the
value —x if x < 0. Express |x — y| in terms of max(x,y) and
min(x, y) where max(x,y) means x if x > y,andy if x <y, and
min(x,yymeans x if x < y,and yif x > y.
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If x>y |x —y = x —y = max(x, y) —min(x, y).
Ifx <y |x—yp =y — x =max(x, y) —min(x, p).
Therefore, |x — y| = max(x, ¥) —min(x, y) in all cases.

} +_|xifx20 — _j—xifx<£0
1-16 Let x™ = Oifx<0’and1etx =1 0ifx> o.
Express:
(@) x in terms of x* and x~ (b) x| in terms of x* and x~
(c) x* in terms of |x| and x (d) x™ in terms of |x| and x.
@ Ifx <0, thenxt =0and x~ = —x, . x = xt — x~.
Ifx>0,thenxt = xandx~ =0,.".x = xt — x~.
If x=0, then x*=xand x = —x, . x+ x=x =
xt — x~.
®)If x <0, then xt¥ =0 and x~ = —x and |x| = —x,
x| = xt 4+ x
If x>0, then x* = xand x~ =0 and |[x| = x, .". |x| =
xt “+ x".
Ifx = 0,then x* = xand x~ = —xand |x| = x,.". x| =
+ x .
(c) Ifx < 0 then x* = 0. Since 2(Ix[ + x) = (—x + x) =0,
(le + x).
Ifx > 0 then x* = x. Since 2(|x| + x) = —(x+ x)=Xx
= -(ixl + x).
Ifx = 0 then x* = x. Since 2(lxl + x) = —(x+x) = X,
(lxl + x).
(d) Ifx < 0 thenx = —x. Smcez(lxl - x) = (—x —x) =
—X, X~ z(lxl - x).
Ifx>0 then x~ = 0. Since 2(|x| —Xx)= 2(x—x)= 0,
x~ (lxl — ).
If x = 0 thenx = —Xx. Smcez(lxl —Xx) = %(—x —-x)=
—x’x z(lxl - x)

1-17 We define the symbol [X] to mean the greatest integer which is not
greater than x itself. Find the value of [y] + [1 — y].

(@ Ifyisanintegerthen[y]+ [1 — yl=y+ 1 -y =1
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() If yisnotaninteger,lety = a + Awhere0 < A < l,andais
an integer. Then Y]+ [1 —yl=la+ A+l - (@+ H]=
a—a=0.Notethat{l — @+ ")) =[-a+ A - h]= —a.

ILLUSTRATIONS: Fory = 6,[y] + [l —y]=64+1—6 = 1.
Fory =637, [y]+[1 —»]1=1[637]4+[1—-63711=6—-6=0.
Fory= —6,y]1+[1 —yl=[-6]+[1]= —-6+7=1
Fory = —6.37,[y]4+ {1 —y]={-6.37]14+[737]= -7+ 7=0.

Challenge 5 Let (x) = x — [x]; express (x + y) in terms of (x) and (y).

Letx =a+4+ e; where0 < e€; < l,andlety = b + €,
where 0 < €; < 1, where a and b are integers. Then
xX)=a+e€,—a=¢€, and () = b+ €3 — b = e,
x+y=a+e€e +b+e. If € +e€;<1, then
x+»)=a+b+e+e2—a—b=¢€ + e,

Therefore, (x + y) = (x) + (y) when €; + €, < 1. If
€, +€22>1, then x+y=a+ b+ 1+ €3, where
€3+ 1 =€+ €;and 0 < ez < 1, since €; + €3 < 2.
Then(x+y)=a+b+1+e—a—>b—1=e;
Therefore, (x + ) = (x) + (y) — 1 whene;, + €; > 1.

1-18 At what time after 4:00 will the minute hand overtake the hour
hand?

We may deal with this problem as we would if asked to find the
time it took a fast car to overtake a slower one. Let us speak of
the rate (i.e., speed) of the hour hand as r. Then the rate of the
minute hand is 12r.

The distance that the hands travel will be measured by the
minute markers of the clock. What we seek in this problem is the
distance (in minutes) that the minute hand must travel to over-
take the hour hand. Let this distance be x. Therefore, the distance
that the hour hand must travel is x — 20, since it has a 20-minute
head start over the minute hand.

Since the time equals the distance divided by the rate, the

time that the minute hand travels is — and the time that the

x — 20 12r
. Since both hands travel the same

hour hand travels is

amount of time:

X x =20 12 9
l—2r=f,x=ﬁ~20,x=2lﬁ.
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Therefore, at 4:2119—] the minute hand will overtake the hour hand.

. 12 . .
NOTE: In the relation, x = T 20, the quantity 20 is the number
of minutes of head start that the hour hand has over the minute

12 . . .
hand. The ratio - e then, is the number of minutes required, per

minute of head start, for the minute hand to overtake the hour
hand. Therefore, we can substitute any known value for the 20,
and find the time required by multiplying by :—f .

For example, if the time at the start is 8:00, x = E 40 =

43]—71 . The minute hand will overtake the hour hand at 8.43ﬁ
Another way of looking at this relation is to say that the head

start of 20 minutes (or whatever the amount) is the time it would
take the minute hand to reach the hour hand if the hour hand

12
did not move. But because the hour hand does move, it takes T

as long. This idea can be applied to many variations of the clock
problem.

Challenge 1 At what time after 7:30 will the hands of a clock be
perpendicular ?

Let us assume that the hour hand does not move after
7:00. Then the minute hand would be perpendicular to
the hour hand at 7:50. (This would happen at 7:20 also,
but the problem asks for a time after 7:30.) The travel
time for the minute hand, with a stationary hour hand

is 50 mmutes With a moving hour hand, it must be
much: -5+ 50 = 54—
The hands will be perpendicular at 7: 54

Challenge 2 Between 3:00 and 4:00, Noreen looked at her watch and
noticed that the minute hand was between 5 and 6. Later,
Noreen looked again and noticed that the hour hand and
the minute hand had exchanged places. What time was it
in the second case?

Let x = position of minute hand between 3:00 and 4:00;
then the position of the hour hand is (15 + 1_x2) . Let
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Challenge 3

y = position of minute hand between 5:00 and 6:00;
then the position of the hour hand is (25 + ]—xz) . Since

the hands have changed places, 15 + 1i2 =y and

29
25 + ]—yz = x. gglve fory;y = 17m.

ANSWER: 5: l7ﬁ§

The hands of Ernie’s clock overlap exactly every 65
minutes. If, according to Ernie’s clock, he begins working
at 9 AM. and finishes at 5 P.M., how long does Ernie work
according to an accurate clock ?

Using the technique described in Problem 1-18, we find

that the hands of an accurate clock overlap every 65131

minutes. Therefore, we may employ the following pro-
portion:

65 minutes 8 hours h=8 8
~ hhours’ T~ “143°

651% minutes

2 Arithmetic: Mean and Otherwise

2-1 The arithmetic mean (A.M.), or ordinary average, of a set of 50
numbers is 32. The A.M. of a second set of 10 numbers is 53. Find
the A.M. of the numbers in the sets combined.

One procedure is to add the 50 numbers of the first set, add the
70 numbers of the second set, add these two sums, and then divide
by 120. But, since the individual numbers are not known, we
cannot use this method.

Nevertheless, we can obtain the essential information needed
for a solution without a knowledge of the individual numbers.

Since A.M. of n numbers = %, where S is the sum of the n
numbers, S = n(A.M.). For the first set of numbers, S; = 50 X
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32, and for the second set of numbers, S, = 70 X 53. Therefore,

the required A.M. is

Challenge 1

Challenge 2

Challenge 3

Challenge 7

(50)(32) + (70)(53)

50 + 70 = 44.25.

Change the A.M. of the second set to —53, and solve.

_ (0GB +70(=53) _ 2110 _ 7
AM. = =857 =~ - 1y

Change the number of elements in each set to 1, and solve.

_MEY+ (XS 2+53
AM. = T = S5 =425

Would you conclude from this illustration that finding
the average of two numbers in the usual manner is a
special case of this method, known as the method of
Weighted Means?

A general representation of the method of Weighted
Means may be given as

(M) + (P)(M3) + - -+ + (P)(Ma) |
Pi+Ps+ - +Pa

where M; is the arithmetic mean of the set of numbers
with P; members in it, i being used for any one of the
natural numbers 1, 2, 3,...,n There are also other
interpretations of the formula.

AM. =

Find the point-average of a student with A in mathematics,
A in physics, B in chemistry, B in English, and C in
history — using the scale: A, 5 points; B, 4 points; C, 3
points; D, 1 point — when () the credits for the courses
are equal (b) the credits for the courses are mathematics,
4; physics, 4; chemistry, 3, English, 3; and history, 3.

_ Q) + @ + (13
AM. = 71241
carry equal credit.

_ (@) + 3@ + (H3X3) _
AM. = = 5@+ o® + e~ 43 when the
credits are, respectively, 4, 4, 3, 3, 3.

= 4.2, when the courses

Estimate the approximate A.M. of the set {61, 62, 63, 65,
68, 73, 81, 94}.

When the numbers of a set are large, and addition be-
comes cumbersome, we frequently use the method of
Guessed Mean to find the A.M. of a set of numbers.
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For example, find the A.M. of the set {61, 62, 63, 65,
68, 73, 81, 94}. Obviously, the A.M. is between the ex-
tremes 61 and 94. Let us guess 70 as the A.M. (Would
80 be a good guess?) The differences between the given
numbers and the guessed mean are —9, —8, —7, -5,
—2, 43, +11, 4+24. Their sum is +7. The true A.M. is,

therefore, 70 + % = 70%.

In rare instances the guessed mean will be the correct
A.M. What is the sum of the differences in this instance?
ANSWER: Zero

2-2 Express the difference of the squares of two consecutive even
integers in terms of their arithmetic mean.

|@n + 2)* — 2n)?| = |(4n + 2)(2)| = [4Q2n + 1)| = 4/AM||
where |x| means +x if x > 0, and —x if x < 0.

2-3 It is a fundamental theorem in arithmetic that a natural number can
be factored into prime factors in only one way — if the order in
which the factors are written is ignored. This is known as the
Unique Factorization Theorem. For example, 12 is uniquely
Sactored into the primes 2, 2, 3.

Consider the set S; = {4,7,10,...,3k + 1,...}, in which
k=1,2,...,n,.... Does S| have unique factorization ?

First, it is important to identify some of the prime members of S;;
that is, those members divisible by themselves but no other
members of S,. These are (with some surprises) 4, 7, 10, 13, 19,
22,25, ..., since each of these numbers is (exactly) divisible only
by itself.

After a few trials you find that 4 X 25 = 10 X 10 = 100,
so that 100 has two different factorizations in S;. Another
instance is 484 = 22 X 22 = 4 X 121. Hence, S; does not have
the property of unique factorization.

Challenge Is factorization unique in S, = {3,4,5,...,k,...}?

Of course, 3, 5,7, 11, . .. are primes in S3, but so are 4, 6,
8, 10, . ... Factorization in S, is not unique since 24 =
4 X 6 = 3 X 8. Can you find another instance?
ANSWER: 36 = 6 X 6 =3 X 3 X 4
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What is the smallest positive value of n for whichn? + n + 41 is
not a prime number?

It may seem strange, but the expression n% 4+ n + 41 does
generate prime numbers for every natural number » from 1 to 39.
However, since n2 + n = n(n + 1), it cannot be the case that
n? 4+ n + 41 is prime when n + 1 = 41; that is, when n = 40
because, then, we have 40(41) + 41 = 412, divisible by 41.
COMMENT: n2 4+ n + 41 generates the same set of primes for the
negative integers —1 to —40, but for n = —41, the expression is
composite, not prime.

Given the positive integers a, b, ¢, d with % < g < 1; arrange in

: : : ...b dbdb+d
order of increasing magnitude the five quantities: 2'c’ac’a + - s 1.

. c d . a c b d
Smoe3<l,z>1.Smce5<3’;>z.Hence,l<z<;'

. d b . bd .
Since each of - and - is greater than 1, then _- is greater than

either. Hence, 1 < d < b < bd.,
c a ac

. b
We now show that the fraction ;—j_;—— , obtained by addmg
separately the numerators and the denominators of and
d
greater than the smaller fraction _, and less than the larger

. b
fractlon = -

Since ‘—i g, ad < bc, therefore, cd + ad < c¢d + bc, and
b + d

bc>ab+ad,b(a+c)>a(b+d) and ii‘:<a'

d b+d b,bd
a+c a ac

The required order is, therefore, 1,

It can be proved (see Appendix I) that, for any natural number n,
the terminal digit of n® is the same as that of n itself; that is,
n®TDn, where the symbol TD means “has the same terminal digit.”
For example, 4° 1D 4.

Find the terminal digit of (a) 2'2 (b) 23° (c) 77 (d) 8'° (e) 81°- 7"/

@) Since 12=5+4+5+2, 2'2=12%.2%.221p2-2:22 =
16 TD 6. (See Appendix 1) (b) 23° = (2%%1D 26 = 2%-2™D
2:2=4.(c)7"=7%-72107-7% = 343D 3.
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Challenge Find the terminating digit of (a) (g) i ®) (;) °.

2-7

5 5
METHOD I: (a) (g) = %TD%. But g = .625, so that the

terminating digit is 5.

5
meop 1: @) (3) = (625)° = (625 X 107%)° =
625% X 107!5. But 625°TD 5, so that the terminating
.. 5\5. 4\5 —_ .
digit of (§) is 5. (b) (7) = (.571428)5; that is, the fifth

power of an endless repeating decimal with period 571428.
Since (571428)° TD 8, the terminating digit is 8, provided
the complete block of digits 571428 is used.

IfN =1-2-3---100 (more conveniently written 100'), find the
number of terminating zeros when the multiplications are carried
out.

For each factor 10 in N there will be a terminating zero; that
is, for every pair of factors 5 and 2, there will be a terminating
zero. We must, therefore, find the number of factors 5 and the
number of factors 2 in 100!

The factor 5 is present once in each of 5, 10, 15, 20, 30, ..., 95
(16 factors), and twice in each of 25, 50, 75, and 100 (8 factors);
a total of 24 factors. The factor 2 is present once in each of 2, 6,
10, 14, ..., 98, twice in each of 4, 12, 20, 28, . . ., 100, three times
in each of 8, 24, . . ., 88, and so forth. (Show that there is a total
of 97 factors 2.) Of these, only 24 are needed to pair with the 24
factors 5. The number of terminating zeros in 100! is, 24.

More elegantly, we find the number of factors 5 as follows:
100 = 5 = 20; 20 + 5 = 4; 20 4+ 4 = 24. Similarly, for the
factor 2, we find 97 factors. (The remainders in the divisions are
disregarded; explain why.)

Find the maximum value of x such that 2* divides 21!

METHOD I: List all the even factors in 21!, namely, 2, 4, ..., 20,
and the highest power of 2 in each, toobtain 1 + 2 4+ 1 4+ 3 +
14+24+14+4+4+1+2=18 .x(max) = 18.

METHOD Ii: Divide 2 into 21 and into the successive quotients
until a quotient less than 2 is obtained. Then add the quotients.
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21 = 2 gives gy = 10; 10 + 2 gives g, = 5; 5 + 2 gives
g3 =2;2+2givesgqqe=1.g1+¢g2+gs +gq4 =10+ 5+
2+ 1= 18

Challenge 2 Find the highest power of 2 in 21! excluding factors also
divisible by 3.

Factors divisible by 2 and 3 are 6 = 23, 12 = 223,
18 = 2 - 3%, Therefore, the highest power is 18 — 4 = 14,

2-9 The number 1234 is not divisible by 11, but the number 1243,
obtained by rearranging the digits, is divisible by 11. Find all the
rearrangements that are divisible by 11.

For an integer to be divisible by 11, the sum of the odd-numbered
digits minus the sum of the even-numbered digits, must equal a
multiple of 11. (See Appendix V.)

Since 2 + 3 = 1 + 4, all rearrangements in which the odd-
numbered digits are 2 and 3, or in which the even-numbered
digits are 2 and 3, are acceptable.

In all, there are 8 rearrangements: 2134, 2431, 3124, 3421,
1243, 4213, 1342, 4312.

Challenge Solve the problem for 12034.

All rearrangements in which the odd-numbered digits are
1, 0, 4, or in which the odd-numbered digits are 2, 0, 3;
eight rearrangements in all.

2-10 Let k be the number of positive integers that leave a remainder of
24 when divided into 4049. Find k.

By definition, Dividend = Quotient X Divisor + Remainder;
or, stated in symbols, D = gd + r, where 0 < r < d. Therefore,
gd=D —r=14049 — 24 = 4025 = 5-5-7-23.

There are, therefore, one divisor using all four prime factors
(557 -23), three divisors using three of the prime factors at a
time (5-5-7,5-5-23,5-7-23), four divisors using two of the
prime factors at a time (5- 5,57, 5 23, 7 - 23), but no divisors
using one of the prime factors at a time. (Why?) Hence, k = 8.

Challenge 1 Find the largest integer that divides 364, 414, and 539
with the same remainder in each case.
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Challenge 2

Challenge 3

Let D be the largest integer dividing the given numbers
with the same remainder. Then 364 = D X Q, + R,
414 = DX Q24+ R, 539 =D X Q3+ R .. 50 =
D(Q: — 01), 125 = D(Q3 — Q2),175 = D(Q3 — Q1).
Since D is an exact (largest) divisor of 50, 125, and 175,
D = 25,

Check to see that the remainders are equal.

A somewhat harder problem is this: find the largest integer
that divides 364, 414, and 541 with remainders Ry, R,
and Rg, respectively, such that R, = R; + 1, and
R 3 = R2 + 1.

Using a similar procedure, we have 364 = DQ; + R;,
414 = DQy+ Ry + 1,541 = DQ3 + R; + 1 + 1.
S50 =D(Qs — Q1) + 1, 127 = D(Q3 — @5) + 1,
177 = D(Q3 — Q1)+ 2..°.49 = D(Q> — 1), 126 =
D(Q3 — Q2), 175 = D(Q3 — Qy1)... D=1

A committee of three students, A, B, and C, meets and
agrees that A report back every 10 days, B, every 12 days,
and C, every 15 days. Find the least number of days
before C again meets both A and B.

We must find the smallest integer exactly divisible by 10,
12, and 15; that is, the least common multiple M of 10,
12, and 15.

Since 10 =25, 12=2-2-3, and 15=3"-5,
M=2-5-2-3 = 60. That is, 4, B, and C will be to-
gether again in 60 days. Put another way, C will find
both 4 and B on the fourth time that he reports back.

2-11 List all the possible remainders when an even integer square is
divided by 8.

First we observe that if N2 is even, then N is even. (Justify this
statement.) Therefore, N = 2k where k is an even or an odd

integer.

When k is odd, say 2m + 1, then N? = 4k? = 4(4m? +
4m + 1) = 16m(m + 1) 4+ 4, and the remainder, upon division
by 8, is 4.

When k is even, say 2m, then N? = 4k? = 4(4m?) = 16m?,
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and the remainder, upon division by 8, is 0. Therefore, the possi-
ble remainders are either 0 or 4.

Which is larger: the number of partitions of the integer N = k - 102
into 2k + 1 positive even integers, or the number of partitions of
N into 2k + 1 positive odd integers, where k = 1, 2, 3,...? To
partition a positive integer is to represent the integer as a sum of
positive integers.

Since N = k - 102 is even, it cannot be partitioned into 2k + 1
positive odd integers since 2k + 1 is odd. Therefore, the parti-
tioning into even integers is larger.

Given the three-digit number N = ajasag, written in base 10, find
the least absolute values of my, my, mg such that N is divisible
by 7 ifmlal + moas + mgaaj is divisible by 7.

N=a; 1024+ a3-10+ a3 = a1(7+ 3)2 + a2(7 + 3) + a3
= T(14ay + a3) + 2a, + 3az + as.

When N is divided by 7, the remainder is 2a, + 3a; + as. It
follows that N is exactly divisible by 7 if 2a; + 3as + a3 is
exactly divisible by 7.

Therefore, my = 2, my = 3, m3 = 1.

Challenge 1 Solve the problem for the six-digit number

N = ajajzagasagzae.
NOTE: Only |m,|, |m;|, and |m3| are needed.

N=ag+ as(T+ 3)+ as(7 + 3)% + a3(7 + 3)3
+ ax(7 + 3)* + a:(7 + 3)°

Therefore,

N = 7p1 + a¢ + 3a5+9a4+ 27(13 + 8la, + 243a,
= Tps + ag + 3as + 2a4 + 6az + 4az + S5a,
= Tps + a¢ + 3as + 2a4 — a3 — 3az — 2a,.

Therefore, N is exactly divisible by 7 if
—2ay, — 3a; — az + 2a4 + 3a5 + ag
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2-14

2-15

is exactly divisible by 7. Hence, the least absolute values
of my, my, my are 2, 3, and 1 respectively.

When x3 + a is divided by x + 2, the remainder is known to be
—15. Find the numerical value of a.

METHOD I: Using the Remainder Theorem (see Appendix II),
we have (=2)3 +a = —15,a = —7.

METHOD I1: By long division, (x® + a) + (x + 2) yields the re-
maindera — 8. g — 8= —15,a= —7

If x — ais a factor of x> + 2ax — 3, find the numerical value(s)
of a.

METHOD I: Let the second factor be x 4+ b. Then
x2+2ax — 3= (x —a)x + b) = x? 4+ x(—a + b) — ab.

..3=gband2a = —a+b,..a= +lor —l,andb = 43 or
-3, respectively. Check x2 4+ 2x — 3 = (x — 1)(x 4 3), and
x2—2x—-3=(x+ D(x - 3).

METHOD 11: With the use of the Remainder Theorem and the
Factor Theorem (see Appendix II), we have P(x) = x2 + 2ax —
3 = 0 when x = a. Since x — a is a factor, a® + 242 — 3 = 0,
3¢ = 3,a= +1or —1.

Challenge 1 Find the remainder when P(x) = x3 — 2x% + 2x — 2

is divided by x + 1.

One way to find out is to perform a long division to ob-
tain the remainder. The quicker way is to use the Re-
mainder Theorem (see Appendix II):

P(~=1) = (=1)} = 2(=D)2+ 2(-1)— 2 = —7.

2-16 Let N be the product of five different odd prime numbers. If N is

the five-digit number abcab,4 < a < 8, find N.

To obtain some idea of the size of the primes involved, note that
since 11° is a six-digit number, some of the primes are less than
11, and at least one is more than 11. We could guess at the first
five odd primes, but 3-5-7-11-13 = 15,015, which is un-
acceptable since it is required that g be greater than 4. Qur second
trial could very well be 5-7-11-13-17 = 85,085, which is
unacceptable since it is required that a < 8.
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Close examination reveals that abcab must be a multiple of
100 =7 - 11 - 13. Since the only numbers between 51 and 79 which
have exactly two odd prime factors different from 7,11, and 13 are
51,57, and 69, the values of N are: 51051 = 3-7-11-13-17;
57057 =3-7-11-13-19;and 69069 = 3-7-11-13-23.

If a five-digit number N is such that the sum of the digits is 29, can
N be the square of an integer?

Assume that N = (k- 102 + ¢- 10 4+ u)%. Since the remainder
obtained when dividing an integer by 9 is equal to the remainder
obtained when dividing the sum of its digits by 9 (reduced by
multiples of 9, if necessary), the remainder for N is equal to the
remainder for (4 + ¢ + u)%, mod 9. However, while the given
sum 29 yields a remainder of 2 when divided by 9, the only
remainders possible with squares of integers are 0, 1, 4, and 7.
(To verify this last remark, designate all integers as n, n + 1,
n+ 2,...n 4 8, with n divisible by 9. Square these expressions
and examine the result.) Consequently, N cannot be the square of
an integer.

ILLUSTRATION 1: N = 24,689 is not the square of an integer; the
sum of its digits is 29.

ILLUSTRATION 2: N = 24,649 = 1572; the sum of its digits is 25,
which, divided by 9, yields a remainder of 7.

Note that the converse of this theorem is not true.
ILLUSTRATION 3: N = 24,694 is not the square of an integer. Yet
the sum of the digits is 25 with a remainder of 7 when divided
by 9.

Each of the digits 2, 3, 4, 5 is used once and once only in writing
a four-digit number. Find the number of such numbers and their
sum.

For the thousands’ position, we may choose any one of the given
four digits; for the hundreds’ position, any one of the remaining
three; for the tens’ position, either one of the remaining two.
The units’ digit is assigned the fourth of the given digits. In all,
there are 4 X 3 X 2 X 1 = 24 possibilities.

Each digit, then, appears 6 times in each position. Therefore,
the sum is

6(5555) + 6(4444) + 6(3333) + 6(2222) = 6(15,554) = 93,324.
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2-19

2-20

Find all positive integral values of k for which 8k + 1 expressed in
base 10 exactly divides 231 expressed in base 8.
231g=2-82+3:-84+1=153,0=9-17 = 1-153. Notice
that 9=1-8+1,17=2-84+1,1=0-8+ 1, and 153 =
19 - 8 + 1. Restricted to positive values, k = 1, 2, 19.

Express in terms of n the positive geometric mean of the positive
divisors of the natural number n. Definition: the positive geometric
mean of the k positive numbers a,, as, . . ., ay is Vajaz . .. a.
Let the divisors of n, arranged in increasing order, be d;, ds, . . .,
d,-. Thenn = dld,- = dzd -1 = d3d —_g = = d,'d,-_,'+1.
dldrdzd N P d,-dl = d12d22 ves d,-2 =n"

'.\/rd12d22...d,-2 = W = n, and Vrdldz... r = \/ﬁ

ILLUSTRATION 1: The divisors of 16 are 1, 2, 4, 8, 16, five in all.
V1:2:4-8-16 = V45 =4 = /16

ILLUSTRATION 2: The divisors of 24 are 1, 2, 3, 4, 6, 8, 12, 24, eight
in all.

V1-2-3:4°6-8-12-24- = V24* = V24

3-1

Relations: Familiar and Surprising

Let y, = XL Let yz be the simplified expression obtained by
replacing x in y, by .Let y3 be the simplified expression ob-

tained by replacing x in y2 by 1 , and so forth. Find ye, Y100,
Yso1-

This looks frighteningly difficult, but it isn’t!

x+1 1

_x-1 _x+1l+x=-1_ 2x
Ve iF T Txvi-x+1- 2%

x =1

x +1

V3 =TT Ve =X

and so forth. For all even subscripts, the value of yg; = x, for
all odd subscripts the value ygrp1 = =2 .
x+1 x -

x — 1

Ve = X, V100 = X,

Ys01 =
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3-2 Let us designate a lattice point in the rectangular Cartesian plane
as one with integral coordinates. Consider a rectangle with sides
parallel 1o the axes such that there are s, lattice points in the base
and sq lattice points in the altitude, and that the vertices are lattice
points.

(a) Find the number of interior lattice points, N(I).
(b) Find the number of boundary lattice points, N(B).
(¢c) Find the total number of lattice points, N.

@) N(I) = (s1 — 2)(s2 — 2) = 5150 — 251 — 255 + 4

(b) N(B) = 251 + 2(sg — 2) = 25, + 255 — 4. An alternative
form for N(B)is 2[(s; — 1) + (s2 — 1)].

(¢) N = N({)+ N(B) = s152

3-3 An approximate formula for a barometric reading, p(millimeters),
Jor altitudes h(meters) above sea level, is p = 760 — .09h, where
h < 500. Find the change in p corresponding to a change in h
JSrom 100 to 250.

Since p, = 760 — .094;, and py = 760 — .09h;, then p, —
pz = —.09(hy — h3), or Ap = —.09 Ah where Ap is the change
inp and Ahis thechangein h. © Ap = —.09(150) = —13.5 mm.;
that is, a decrease of 13.5 mm. in barometric pressure.
Check by finding p; for # = 100, and p; for A = 250.

3-4 A student wishing to give 25 cents to each of several charities finds
that he is 10 cents short. If, instead, he gives 20 cents to each of
the charities, then he is left with 25 cents. Find the amount of
money with which the student starts.

Let n represent the number of charities, and A4, in cents, the
amount of money with which the student starts.

The first condition, translated, becomes 4 — 25n = —10.
The second condition, translated, becomes A4 — 20n = 25.
Therefore, 5n = 35, n=7. A —20-7 =25, A = 165. The
amount started with is $1.65.

Challenge 3 How does the answer change if the original shortage is
25 cents?

In a certain sense this is an unfair question. He could
simply reduce the number of charities (if unspecified) by
one. In this case, the amount A4 is undetermined, except
to say that it is a multiple of 25. If, however, the number
of charities is fixed, then the amount A4 is $2.25.
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3-5

3-6

3-7

3-8

Find two numbers x and y such that xy, 3, and x — y are equal.

.p=1or —1. Also x —y=xp. For y=1, x —
1 = x, a contradiction. For y = —1, x4+ 1 = —x, x = —%’
X = —%,y= —1.

Xy =

X

A merchant on his way to the market with n bags of flour passes
through three tollgates. At the first gate, the toll is - of his holdmgs,
but 3 bags are returned. At the second gate, the toll is of his
(new) holdings, but 2 bags are returned. At the third gate, the toll
is % of his (new) holdings, but 1 bag is returned. The merchant
arrives at the market with exactly r_21 bags. If all transactions in-

volve whole bags, find the value of n.

The number of bags remaining after the first toll is %" + 3, after
the second toll,g + 4, and after the third toll,:-; + 3. :—; + 3=
Zon=12.

The number Ny is 259, more than the number N, the number N
is 209, more than N, and the number N, is X9, less than N3.
For what value of x is Ny = N7

Mo = s (1 - i55) = (1 = 55) (1 + 1ag) ¥
= (1= 555) (1 + 3g) (1 + ) s

For N4 to equal Ny, (l - &) (l + %) (l + ‘-1‘) must equal 1.

There, (1 100) (5) (4) =Ll-qg=3.%= 33%'

Let R = px represent the revenue, R (dollars), obtained from the
sale of x articles, each at selling price p (dollars). Let C = mx + b
represent the total cost, C, in dollars, of producing and selling these
x articles. How many articles must be sold to break even?

At the break-even point, R = C; that is, px = mx + b, so that
pb

x=L-Forthisvalueofx,R= C=——
p—m p—m
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3-9 In a certain examination it is noted that the average mark of those
passing is 65, while the average mark of those failing is 35. If
the average mark of all participants is 53, what percentage of the
participants passed ?

We represent the number of participants passing by P, and the
number failing by F. The total score of those passing is 65P,
the total score of those failing is 35F, and the total score of all
is 53(P + F).

65P + 35F = 53(P + F), 12P = 18F, F = 2P Since the

ratio of those passing to all the participants is -— P + 7o We have
P

PrF= ~—P— = . The percentage passing is ¢ (100)
+ F p+2 P 5

3-10 Under plan 1 a merchant sells ny articles, priced 1 for 2¢, with
a profit of ¢ on each article, and ng articles, priced 2 for 3¢,
with a proﬁt of ¢ on each article. Under Plan II, he mixes the
articles and sells them at 3 for 5¢. If ny + ng articles are sold

under each plan, for what ratio E is the profit the same ?
p

Under Plan I, the selling prnce is 2n1 + 2 M2, the profit is
lnl + g "2 and the cost is l ny + 1 no. Under Plan II, the
selling prlce is 3 > 3 (m + nz), the cost is the same as in Plan I,

1
and the profit is — pm+ 5 24
n Tny n, na n, 1 We

n;
Therefore, T+§=_ﬁ+2—4’ 36 m=3

could just as well have set the Plan I selling price equal to the
Plan II selling price to obtain the required ratio since, if the
profit is the same and the number of each article sold is the same,
the selling price must be the same under both plans. Work out
the details.

Challenge Change 2¢ to p¢ and 3¢ to q¢ and solve the problem.

Under Plan I, the selling pnce is pny + 2’ , and under
(nl + n3). Since the costs

Plan 11, the selling price is p
are the same, and the proﬁts are the same under both plans,
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3-1

3-12

it follows that pny + 22 = 259 (n, 4 ny).

. 2p—q 2p—gq\ n 1
'"‘( 3 )=”2( 6 )’n—;=§

The sum of two numbers x and y, with x > vy, is 36. When x is
divided by 4 and y is divided by 5, the sum of the quotients is 8.
Find the numbers x and y.

Working formally, we have x 4+ y = 36, ';: + % = 8. From this

pair of equations we obtain x = 16, y = 20. But it is given that
x > y. Consequently, there is no solution to the problem.

Find the values of x satisfying the equation |x — a] = |x — b|,
where a, b are distinct real numbers.

The interpretation x — a = x — b contradicts the given in-
formation that a = b,
Hence, x —a= —(x—1b), or —(x—a)=x—>b. In

either case, 2x = a + b, x = %(a + b); that is, x is the arith-

metic mean between a and b.

Here, again, a geometric interpretation is enlightening. If
a < b, it follows that @ < x < b; point a is to the left of point x
which is to the left of point b. The distance x — a equals the
distance b — x. If a > b, it follows that b < x < a; the order of
points from left to right is b, x, a. Again the distance x — b equals
the distance a — x. A single expression for bothcasesis|x — a| =
|x — b.

Challenge 3 Find the values of x satisfying the equation |2x — 1| =

Ix — 2[.

Here a new element requires our consideration. If we
. 1 .

think of [2x — 1] as 2lx — 5’ , we interpret the problem

to mean that the distance of x from 2 is twice the distance
of x from % This allows for the two possibilities:
2(x—3)=x-2 ad 2(x-3) =~ -2 In

the former case x = —1, in the latter, x = 1. (See
Figs. S3-12a, and S3-12b.)
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X X
-1 0 2 0 Y% 1 2
$312a $3-12b

3-13

3-14

3-15

Two night watchmen, Smith and Jones, arrange for an evening
together away from work. Smith is off duty every eighth evening
starting today, while Jones is off duty every sixth evening starting
tomorrow. In how many days from today can they get together?

Smith is off the first day, the ninth day, the seventeenth day, and
so forth; that is, on the days numbered 1 4 85, where S = 0, 1,
2,.... Similarly, Jones’ days off may be represented by 2 + 6J,
whereJ =0,1,2,....

We must, therefore, find a solution in positive integers to the
equation 1 + 85 = 2 + 6J, or 85 = | + 6J. Since, for integer
values of S and J, the left side is always even while the right side
is always odd, the equation is not solvable in integers.

Smith and Jones cannot get together.

A man buys 3-cent stamps and 6-cent stamps, 120 in all. He pays
Jor them with a $5.00 bill and receives 715 cents in change. Does
he receive the correct change?

Represent by x the number of 3-cent stamps. Then 120 — x
represents the number of 6-cent stamps. The total cost of the
stamps, in cents, is C = 3x + 6(120 — x) = 720 — 3x, so that
C is divisible by 3. Hence, the payment P should be divisible by 3.
But P = 500 — 75 = 425 is not divisible by 3. It follows that
the 75 cents change is incorrect.

In how many ways can a quarter be changed into dimes, nickels,
and cents?

As the problem is stated it is somewhat ambiguous. We want to
know if we must use three coin-types, or if we are permitted to
use two coin-types, or one coin-type. We consider each case.
Representing the number of dimes, nickels, and cents re-
spectively by d, n, and ¢, we have 25 = 10d + 5n 4+ c.
The equation contains three unknown quantities, but we have
only this one equation. Is there any other helpful information?
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Yes, the knowledge that each of d, n, and c is a positive integer
(or zero for the second and third cases).

This is an instance of what mathematicians call a Diophantine
equation. To a large extent it is solved by trial. Obviously, if
d = 0, n = 0, then ¢ = 25. The table below shows all possible
combinations.

d | 0 0 0 O0O0O 1 1 11 2 2

n o 1 2 3 45 0 1 2 3 01
c | 25 20 15 10 5 0 15 10 5 0 5 O

Satisfy yourself that no permissible combination has been
omitted. Therefore, if at least one of each coin must be used,
there are just two possibilities. If only two coin-types are used,
there are eight possibilities. If a single coin-type is acceptable,
there are, again, just two possibilities. The total for the three
cases is 12 possibilities.

Challenge Is the answer unique if it is stipulated that there are five
times as many coins of one kind as of the other two kinds
together?

Of course if a list of all possibilities (as shown above) is
available, we merely read off the answer. How do we
proceed if no such list is available, and we do not care to
prepare one?

We immediately rule out the possibility of 5 dimes or
5 nickels. That leaves only the possibility that the number
of cents is five times the combined number of dimes and
nickels.

25 = 10d + 5n + 5(d + n),

25 = 15d + 10n, 5 = 3d + 2n.
Obviously, d = 1, n = 1. The combination of 1 dime, 1
nickel, 10 cents is unique.
3-16 Find the number of ways in which 20 U.S. coins, consisting of

quarters, dimes, and nickels, can have a value of $3.10.

Letting g, d, and n, respectively, represent the number of quarters,
dimes, and nickels, we translate one condition of the problem
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into 25¢ + 10d + 5n = 310. Since there are 20 coins in all,
n=20—gq—d.

Substituting for n in the first equation and simplifying, we
have the relatively simple equation 4g + d = 42. The equation
4g 4+ d = 42 could be solved by trial and error, but it will
probably save time to proceed as follows

42 —
m = 10 — T To insure

an integral value for ¢, the quantity d — 2 must be a multiple of
4, Setd — 2 = 4k. Theng = 10 — k where k =0, 1, 2,....
Taking, in turn, k = 0, 1, 2, . . . we have the following.

Solving for g we have ¢ =

k d q n total
0 2 10 8 20

1 6 9 5 20

2 10 8 2 20

3 14 7 1 (Reject)

Note the result of taking k > 3. There are, therefore, three
acceptable ways, as shown in rows 1, 2, 3.

An alternate method for solving the Diophantine equation
4q 4+ d = 42 is as follows. Since the greatest common factor of
4 and 1 exactly divides 42 there exist integer solutions to the
equation.

By observation, one such solution is ¢ = 10, d = 2. As a

result of subtracting 4(10) + (2) = 42 from 49 + d = 42, we
getdg — 10) +d — 2 = 0. Hence 2= = =42 _  where
t is an integer. Therefore, ¢ = ¢ + 10, and d = 2 — 4¢. Taking

integral values of ¢ we have the following.

t d q n total
1 -2 11 0 (Reject)
0 2 10 8 20
-1 6 9 5 20
-2 10 8 2 20
-3 14 7 1 (Reject)

Note the result of taking ¢+ > 1, or + £ —3 yields an absurd
answer; thus there are only three possible answers.
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4

4-1

Bases: Binary and Beyond

Can you explain mathematically the basis for the following correct
method of multiplying two numbers, sometimes referred to as the
Russian Peasant Method of multiplication ?

Let us say that we are to find the product 19 X 23. In successive
rows, we halve the entries in the first column, rejecting the remain-
ders of 1 where they occur. In the second column, we double each
successive entry. This process continues until a 1 appears in column I.

I I
9] 23
9] 46
41 92
21184
| 368
437

We then add the entries in column II, omitting those that are
associated with the even entries in column I.
(1923)) = 92+ 123) =9-46+1-23
(9)(@46) = (4-24+ 1)46) = 4-92+ 1-46

4)©92) = (2-2+0)92) =2-184+0-92

(2)(184) = (1-2 + 0)(184) = 1-368 + 0- 184

(1)(368) = (0- 2 + 1)(368) = 1-368
437

The binary nature of this multiplication is shown in the following.
(A923) = (1-2* 4+ 022 4+0-22 4 1-2 4 1)(23)

1-2342-234+0-23+0-23 +2*-23

23 + 46 + 0+ 0 4 368 = 437

If x=1{0,1,2,...,n,...}, find the possible terminating digits
of x2 + x in base 2.
Whether x is odd or even, x2 + x = x(x 4 1) is even since, if x

is odd, x 4~ 1 is even, and if x 4+ 1 is odd, x is even. Therefore,
in every instance, the terminating digit is 0.
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4-3 Find the base b such that 72, = 2(27y,). 72, means 72 written in

base b.

Tb+2=202b+ 7)=4b+ 14 . 3b = 12, b = 4. This value
is unacceptable since there is no digit 7 in base 4.

Challenge 1

Try the problem for 73, = 2(37y,).
Tb4+3=234+T7 .b=11

4-4 In what base b is 441y, the square of an integer?

441y = 4b% 4 4b + 1 = (2b + 1)2. Therefore, 441, is the
square of an integer in all bases b > 4, as 4 must be a member of
the set of digits to be used in base b.

ILLUSTRATION 1: 4415 = (215)°
ILLUSTRATION 2: 4415 = (2110)?
ILLUSTRATION 3: 441, = (21;5)®

Challenge 1

Challenge 2

If N is the base 4 equivalent of 441 written in base 10,
find the square root of N in base 4.

441,0=12321, = 1-4*+2-434+3-424+2-4+1
=(1-424+1-44+1D2=N
VN =111,

Find the smallest base b for which 294y, is the square of
an integer.
294, = 262 +9b 4+ 4 = (2b + 1)(b + 4)

Since 294, is even and 2b + 1 is odd, then b + 4 is even
so that b is even, and b > 10. (Why?) It follows that
each factor is the square of an integer.

If 5= 10, then 2b + 1 = 21, not the square of an
integer.

Ifb=12,then2b+ 1 =25=5%and b+ 4 = 16 = 4%,

VERIFICATION: 294,, = 2-122 +9-12 4+ 4 =
(1-12 4+ 8)% = (18,,)®

COMMENT: The next larger base is 60. Verify.
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4-5 Let N be the three-digit number aiasaz written in base b, b > 2,
andletS = a, + ay + az. Prove that N — S isdivisiblebyb — 1.

PROOF:

N=a; b>+ a; b+ az
—aib— 14 12+ as(b— 1+ 1)+ as
=ai(b— 1>+ 2a;(b — )+ ar+ ax(b— 1)+ a2 + a3
N—S=a1b—1)?+2a,(b—1)+axb—1)

Since the right side of this last equality is divisible by b — 1,
so is the left side.

4-6 Let N be the four-digit number aga azaz (in base 10), and let N’

be the four-digit number which is any of the 24 rearrangements of
the digits. Let D = |N — N'|. Find the largest digit that exactly
divides D.
Since N = ao- 103 + a,- 102 + a5 - 10 + a5 = ao(9 + 1)% +
a1(9 + 1)® + a5(9 + 1) + a3, we can express N as 9K + ao +
a, + as + az. Similarly, N' = 9K' 4+ a¢ + a; + as + a;.
Therefore, D = |9K — 9K’| = 9|K — K’[, so that D is exactly
divisible by 9.

4-7 Express in binary notation (base 2) the decimal number 6.75.

This one is easy enough to do without a formal procedure. The
fractional part .75 = % and can be expressed as %+ % The
integral part 6 is equivalentto 1-2%2 + 1:2 4+ 0.

Therefore, 6.75 = 1-22 + "2+°+%+il‘a
=1-2241-240-2°4+1-27" 4 1-27%
so that 6.75 (base 10) = 110.11 (base 2).

Challenge 1 Convert the decimal number N = 19.65625 into a binary
number.

For less simple cases we may need a formal procedure.
(a) For the integral part of N, 19, we obtain the non-
negative integral powers of two as follows.

19 = ax + 2(@k—1) + 2%(ak—2) + - - + 2¥"(ay) ()
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Divide equation (1) by 2; the remainder 1 of the left
side equals the remainder a; of the right side. Removing
these remainders we now have

9 = ax_1 + 2(@k-2) + 2%@—3) + ---. (D

Divide equation (II) by 2; again the remainder 1 of
the left side equals the remainder a;_, of the right side.
Removing these remainders we now have

4=a_y+ 2ar_3) + 2%(ax_4) + ---. ()

Divide equation (II1) by 2; the left side remainder 0
equals the right side remainder ax_,. Continuing in this
manner we find that the process ends in two more steps
witha;_3 = Oand ay_4 = 1.

Reassembling these partial results we have

19=1-24+0-2240-224+1-2+4+1
= 10011 (base 2).

(b) For the fractional part of N, .65625, we obtain the
negative integral powers of 2 as follows. Let 0.65625 =

b b b .
7‘ + 2—2 + 2—3 + ++-. For convenience, however, we
65625 21
reduce 100000 to 35 so that
21

by . by b3
n=32tTatxn*t :

Multiplying the equation above by 2, we obtain :—; =14+

10 5 C g 5
33 = 1+ 1, s0that by = 1. Multiplying I by 2, we

have 16 = 0 + 3, so that b, = 0. Multiplying 3 by 2,
8
2, we have 0 + 3, so that b, = 0. Finally, ; X 2 = 1,

so that b; = 1, and the process ends.
Reassembling these partial results we find 0.65625 =

1 0 1 0 1
5 + 2 + 25 + 2t 3= .10101 (base 2).
Therefore, 19.65625 (base 10) = 10011.10101 (base 2).

we have 0_y + }‘, so that b3 = 1. Multiplying % by
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Challenge 2 Does the (base 10) non-terminating expansion 5.333 . ..
terminate when converted into base 2?7

As a first consideration we ask ourselves, which
reduced proper fractions have decimal expansions that
terminate? Answer: Those whose denominators contain
only the factors 2 and 5, exact divisors of 10. It would
seem reasonable to conclude that reduced fractions whose
denominators contain only the factors 2 will have
terminating expansions in the base 2.

This was illustrated above with the decimal 0.65625,
which became .10101 in the base 2. Additional illustra-
tions follow.

ILLUSTRATION 1: We return to the problem above and
convert the decimal 5.333 ... into a “binimal” [the word
binimal is an ad hoc invention).

5=1-2240-2+4+1..5(base 10) = 101 (base 2)
1 1 2 2 1
333...=33X2=0+33X2=1+3
From this point on the digits 0 and 1 repeat endlessly.
Therefore, 5.333 . . . (base 10) = 101.010101 . . . (base 2).

This establishes that 5.333 ... (base 10) does not termi-
nate when converted to base 2.

ILLUSTRATION 2: Even a terminating expansion in base 10
may become non-terminating in base 2. For example,
8.60 (base 10) = 1000.10011001 . . . (base 2).

ILLUSTRATION 3: Convert the decimal 8.60 into a quinimal
(base 5).
ANSWER: 8.60 (base 10) = 13.3 (base 5)

ILLUSTRATION 4: Convert the decimal 8.60 into a senimal

(base 6).

ANSWER: 8.60 (base 10) = 12.333 ... (base 6)
ILLUSTRATION 5: Convert the decimal 5.333... into a
senimal.

ANSWER: 5.2

ILLUSTRATION 6: Convert the binimal 111.001 into a
senimal.
ANSWER: 11.043
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Assumer = {6,7,8,9,10} and 1 < a < r. If there is exactly one
integer value of a for which i , expressed in the base r, is a termi-

nating r-mal, find r.

Try, in turn, each member of the set r. For r= 6, there are 2
3 2

terminating r-mals, to wnt =gan d 3§

For r = 7, there are no termmatmg r-mals.

for ; = 8, there are 2 terminating r-mals, to wit, % = g and
4”8 . C . .1 3

For r = 9, there is just 1 terminating r-mal, to wit, 39

For r2= 10, there are 2 terminating r-mals, to wit, % = % and
-3

The answer is, therefore, r = 9.

From the unit segment OA extending from the origin O to A(1, 0),
remove the middle third. Label the remaining segments OB and CA,
and remove the middle third from segment OB. Label the first two
remaining segments OD and EB. Express the coordinates of D,
E, and B in base 3.

OB = 3 so that the coordinates of B in base 3 are (.1, 0).

oD = % = g + %, so that the coordinates of D in base 3 are
(.01, 0).

OE = % = g + % , so that the coordinates of E in base 3 are
(.02, 0).

These points are elements of the Cantor Set which is the set of
points formed from the closed interval [0, 1] by removing first
the middle third of the interval, then the middle third of each
remaining interval, and so on indefinitely.

Assume that there are n stacks of tokens with n tokens in each
stack. One and only one stack consists entirely of counterfeit
tokens, each token weighing 0.9 ounce. If each true token weighs
1.0 ounce, explain how to identify the counterfeit stack in one
weighing, using a scale that gives a reading. You may remove
tokens from any stack.
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If all were true tokens, the total weight would be nZ ounces.
Since the counterfeits are lighter, there is an overall deficiency of

1 e . .
7o "t ounces. However, thinking in terms of the overall deficiency

is not helpful since the situation is unchanged whether the counter-
feit stack is the first, the second, the third, . .., or the n-th.

We must find a way to vary the deficiency in a controllable
way!

Label the stacks 1, 2, 3, ..., n. From the first stack take one
token, from the second stack, two tokens, ..., from the i-th
stack, i tokens, 1 < i < n. Weigh the collection so obtained.

If all the tokens were true, the weight would be %n(n + 1)
ounces. (See Appendix VII.) The weight actually obtained will be
less than this amount by, say, % ounces. This is the key to the

. . . k . . .
solution since a deficiency of 10 ounces implies k counterfeit

tokens. Since k tokens came from the k-th stack, it is the counter-
feit stack.
For example, if the number of stacks is 10, we weigh 1 4+

24 ---4+10 = %(10)(11) = 55 tokens. If they were all true, the

weight would be 55 ounces. Let us say that the deficiency is

1 . . 1 1
3 ounce. There are, therefore, 5 counterfeit tokens since k 0= 2
implies that k = 5. The counterfeit stack is the one numbered 5.

Challenge 3 Solve the generalized problem of n stacks with n tokens
each, if each true token weighs t ounces and each counter-
Seit weighs s ounces. Then apply the result to Problem 4-10

and its challenges.

For a deficiency of r ounces, ¢ > s, the counterfeit stack
is ﬁ . For an excess of r ounces, ¢ < s, the counter-
feit stack is s—:’ . A single answer for both cases is ItTrSI .

How do you interpret a non-integral value of Il—:;l ?
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5 Equations, Inequations, and Pitfalls

x __4 .
x—2 x-=2

5-1 Find the solution set of the equation

A formal procedure yields 2x = 4, x = 2. But x = 2 is an
unusable result since it leads to division by zero.
EXPLANATION: To obtain a root of an equation the steps in the
solution must be reversible. Put another way, each succeeding
equation in the solution must be equivalent to the preceding one;
that is, the manipulations must produce logically equivalent sen-
tences since logically equivalent sentences define the same set.
From x = 2 it is permissible to go to 2x = 4, but to go from

2x 4
2x = 4 to T_3 = x-3
division by zero. Therefore, the solution set is the null set.

is not permissible since it involves

x—3
zy_7=x—3.

For 2y —7#0, x—3=x-3)2y -7 ..(x—3)X
(2y — 7 — 1) = 0. For any real value of y, except 3%,x =3,

5-2 Find the pairs of numbers x, y such that

and for any real value of x, y = 4.

5-3 Find all the real values of x such that |[\/x — V2| < 1.

Since —1 <vVx—v2<1, V2-1<vVx<V2Z+1, we
have, upon squaring the inequalities, 3 — 24/2 < x < 3 + 2v/2.

Therefore, x can have any value between 0.172 (approx.) and
5.828 (approx.).

Challenge Let the set of all values of x satisfying the inequalities
|x — 8| < 6 and |x — 3| > 5 be written as a < x < b.

Find b — a.
Since|x — 8| < 6,x —8 < 6,andx — 8> —6.".x < 14,
and x > 2.

9 >

2 ==
8 10 12 14 16
S53

*

Similarly, from |[x — 3| > 5 we find x < =2, or x >
The overlap of these intervalsis8 < x < 14,.".b — a = 6.
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In Fig. S5-3, the values of x satisfying the inequalities
|x — 8] < 6 are shown by the solid line; those satisfying
the inequalities |[x — 3| > 5, by the two arrows. The
overlap consists of x-values greater than 8 and less than 14.

5-4 Find all values of x satisfying the equation 2x = |x| + 1.

5-6

Since the right side of the equation is positive for all values of x,
the left side must also be positive, sothat x > 0. ".2x = x + 1,
x=1

y
Q|
2 2
2
13
1
3
X4
off : 1
[ ]
S5 4

It is instructive to look at a geometric interpretation of this
equation, as shown in Fig. S5-4. The graph of y = 2x is (1), a
line through 0. The graph of y = |x| + 1 is (2), the V-shaped
broken line. The graphs intersect at point P where x = 1.

Find values of a and b so that ax + 2 < 3x + b for all x < 0.

METHOD I: Rearranging, we have x(@a — 3) < b — 2. Comparing
this inequality with mx < 0, which holds for all x < 0 and all
m > 0, we conclude that a — 3 > 0 and b — 2 = 0, so that
a>3and b = 2.

METHOD 1I: Let X’ = —x when x < 0, x’ > 0. .ax’ > 3x' for
a>3 ..ax’+2>3x+ 2, a> 3. Comparing this in-
equality with the given inequality, we see that b = 2, @ > 3.

Find all positive integers that leave a remainder of 1 when divided
by 5, and leave a remainder of 2 when divided by 1.

N=5b+1=7a+2 so that b = 2 F1 b1,

5 and a = 7
For b to be an integer @ must leave a remainder of 2 when divided
by 5; that is, @ = 5k + 2. Similar reasoning leads to the result
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b=1TL+ 3. Therefore, N = T7(5k + 2)+ 2 = 35k + 16,
where k =0, 1, 2,..., or N=57L+ 3)+ 1 = 35L + 16,
where L =0,1,2,....

Challenge 2 Solve the problem with the first remainder 1 < r; < 4,
and the second remainder 1 < ry, < 6.
Ta+re—r,

N=5b+ry="7a+ ry so that b = 5 and
a= ib—y. To obtain integral b, 7a + r; — ry

must be divisible by 5, so that a = 5k 4+ 2rp — 2r,.
Similar reasoning leads to the resultb = 7L + 3rp — 3r;.
Therefore,

N = 7(5k + 2"2 et 2"1) + rqo = 35k + 15"2 - 14"1,
or N = 5(7L+ 3"2 - 3"1)+ ry = 35L + 15"2 - 14"1.
Verify the solution to the original problem by using this
result.

5-7 On a fence are sparrows and pigeons. When five sparrows leave,
there remain two pigeons for every sparrow. Then twenty-five
pigeons leave, and there are now three sparrows for every pigeon.
Find the original number of sparrows.

y/] s— 5
s—5_ 2; p—25
(sparrows) and p = 30 (pigeons).

= 3. Solve simultaneously to get s = 20

Challenge 1 Replace “five”” by a and ““rwenty-five”” by b, and find s and
p (the number of sparrows and the number of pigeons,
respectively).

ANSWER: p = %, s=a+ 35—[’. Note that, for this
problem to be meaningful, b must be a multiple of 5.

Challenge 2 Solve the problem generally using t, and rt, respectively,
for the two ratios, and a and b as in Challenge 1.

=y, 39 _
s—a Ty pT 2
._P  _ _ _nre
== rirg,and p = mz_l(b).
_ﬂ_ r2 _ re
s—a—rl—rlrz_l(b),ands—a+w2_1(b).

Check the first answers by these formulas.
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A swimmer at A, on one side of a straight-banked canal 250 feet
wide, swims to a point B on the other bank, directly opposite to A.
His steady rate of swimming is 3 f1./sec., and the canal flow is a
steady 2 ft./sec. Find the shortest time to swim from A to B.

ce——> .5

x=3u v5u=250

S58

Since the swimmer must counteract the effects of the current, he
plans his route in terms of vectors, as shown in Fig. S5-8. Since
the vector AC plus the vector CB equals the vector 4B, the
swimmer sets his course in the direction of C. But (4B)? =

(AC)% — (CB)? = (Bu)? — (2u)? = 5u’ (Pythagorean Theorem).
3 750
Hence AB = u\/5. .. —2;(0 =% ”5 »x = 75 (feet).

. . 150 250
The shortest time is 5T 3= 75 seconds.

Miss Jones buys x flowers for y dollars, where x and y are integers.
As she is about 10 leave the clerk says, ““If you buy 18 flowers more,
I can let you have them all for six dollars. In this way you save 60
cents per dozen.” Find a set of values for x and y satisfying these
conditions.

0y 600 _60 y 6 1
x x+18 12°x x+418 20
1 1 1 3 6

Find the set of real values of x satisfying the equation

x+5__x+6__x+7_x+8.
x+4 x+5 x+6 x+4+7

We note that the equation is in the form

x+a+l_x+a+2_x+a+3_x+a+4.
x+a x+a+1 x+a+2 x+a+3
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We can, therefore, solve the problem for an arbitrary value of g
with no more difficulty than for the particular value 4.

Combining the two fractions on the left, we obtain
1

(x+a)(x+la+1);

combining the two on the right, we obtain

rTa+ 2 Fat3y Iherefore, (ng++a3)(x tat =

x+a+ 2)(x+ a+ 3),and so x = 2
11

For the particular valuea = 4, x = — 5

COMMENT: In unsimplified form

_ @+ 2a +3) —aa+1) )
[@+2)+a+3]—la+ @@+ 1)

X =

The contents of a purse are not revealed to us, but we are told that
there are exactly 6 pennies and at least one nickel and one dime.
We are further told that if the number of dimes were changed to
the number of nickels, the number of nickels were changed to the
number of pennies, and the number of pennies were changed to the
number of dimes, the sum would remain unchanged. Find the
least possible and the largest possible number of coins the purse
contains.

An obvious solution is 6 dimes, 6 nickels, and 6 pennies. But are
18 coins the least possible? Or the largest possible?

If d and n, respectively, represent the number of dimes and the
number of nickels, the condition of constant sums is translated
into 10d + 5n 4+ 6 = 5d+ n+ 60, with n > 1, d > 1. More

Ld
12
\(i,m)
8 \‘
(6,6)
y. | A
\\(11.2)
nd
0 4 8 12

S5 1la
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simply, we write 5d = 54 — 4nand d = 10 — dn 5— 4. For d to

ce . 4n — 4 .
be a positive integer, —5— must be an integer less than 10.

Since n < 13, the only acceptable values for n are 11, 6, and 1.
The corresponding d-values are 2, 6, and 10. (See Fig. S5-11a.)

The three possibilities are, therefore, 2 dimes, 11 nickels, 6
pennies; 6 dimes, 6 nickels, 6 pennies; 10 dimes, 1 nickel, 6
pennies. The first combination has 19 coins, the largest possible
number, and the third combination has 17 coins, the least possible
number.

In this instance, the largest combination of coins yields the
smallest amount, while the smallest combinations of coins yields
the largest amount. We will return to this reversal shortly.

Challenge 1 How does the situation change if the number of nickels is
6, and the number of dimes and the number of pennies are
unspecified, except that there must be at least one of each?

Here, again, an obvious solution is 6 dimes, 6 nickels,
and 6 pennies. But, again, we ask whether 18 coins is the
maximum, the minimum, or neither.

10d + 30 + ¢ = 5d + 6 + 10c,

- 24
<.5d =9 — 24,d = X
9 — 24 .. .
For 5 to be a positive integer, ¢ must have the
p |
, 11,15)
y
H12 /
6,6)
4
o 4 8 12 "

S5 11b

form 5k + 1, where k = 1, 2, .. .. Acceptable values of
c are 6, 11, 16, ..., with 6, 15, 24, ... as the corre-
sponding d-values, as shown in Fig. S5-11b. There are,



Challenge 2

Challenge 3
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therefore, an endless number of coin combinations, the
first three of which are 6 dimes, 6 nickels, 6 pennies;
15 dimes, 6 nickels, 11 pennies; 24 dimes, 6 nickels, 16
pennies. Here there is no largest combination of coins,
and the smallest is the 6-6-6 combination.

What solution is obtained if the number of dimes is 6, but
the nickels and pennies are unspecified?

The number of possibilities is endless. The first three are
6 dimes, 6 nickels, 6 cents (the smallest combination);
6 dimes, 15 nickels, 10 cents; and 6 dimes, 24 nickels, 14
cents. There is no largest combination. (See Fig. S5-11c.)

! ]
Ln /| I 4
)f(m.ls :
12 /
) /
(6,6)
/
0 2 8 YR
HEEER
S5 11c

Explain why, in the original problem, the least number of
coins yields the greatest value, whereas in Challenges 1
and 2 the least number of coins yields the smallest value.

Consider the original simplified equation d = 10 —

dn 5 2 By adding n + 6 to both sides we have d + n +
6 = &:—" . The left side of this equation represents the

total number of coins, N; the relation shows that as n

increases on the right, N, too, increases.
4n

By multiplying the equation d = 10 — *=2 by 10,

and adding to both sides 5n + 6, we obtain 10d + 51 +
6 = 114 — 3n. The left side of this equation represents
the total value of the coins, V; the relation shows that as
n increases on the right, ¥ decreases.
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On the other hand, in Challenge 1 we have

d=9c;24. Therefore, N=d+6+c=9c;24+

6 + ¢. As c increases, N increases also. V = 10d +
30 + ¢ = 19¢ — 18, and, as ¢ increases, V increases.

Challenge 4 [Investigate the problem if there are exactly 6 pennies, and

5-12

5-13

at least one nickel, one dime, and one quarter.

There are many possibilities, one of which is 8 quarters,
4 dimes, 1 nickel, and 6 pennies.

NOTE: The method used in Solution 3-16 may be used in
Solution 5-11.

A shopper budgets twenty cents for twenty hardware items. Item A
is priced at 4 cents each, item B, at 4 for 1 cent, and item C, at 2
Jor 1 cent. Find all the possible combinations of 20 items made up
of items A, B, and C that are purchasable.

Representing the quantities of items A4, B, and C, respectively, by
x, y, and z, we translate the given statementsintox + y + z = 20

and 4x + ‘1—‘ y+ %z = 20. These equations imply that y =

14x — 40 and z = 60 — 15x.

To avoid fractions of a cent, z must be even and y must be a
multiple of 4. But, since z < 20and y > 0, x must be 4. However,
this value of x makes z = 0, and the system of equations is
inconsistent.

To obtain a mathematical solution we must allow z to be odd.
It follows, then, that x = 3, y = 2, and z = 15. These values
satisfy the quantity equation and also the cost equation. From a
commercial point of view, however, this may be an unsatisfactory
answer.

Partition 15 into four positive integers a, b, ¢, d such that the
results are the same when 4 is added to a, subtracted from b,
multiplied by c, and divided into d. To partition a positive integer
is to represent the integer as a sum of positive integers.

The given information implies six equalities which have the
compactforma + 4 =b — 4 = 4c = Z.Therefore,b =a+ 8§,
c=3+1,d=4a+16. Alo, since a+b+c+d=1715
a+a+8+7+1+44a+16 =75 Thercfore, a =8, b =
16, ¢ = 3,d = 48.
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Challenge 2 Partition 100 into five parts a, b, c, d, € so that the results

are the same when 2 is added to a, 2 is subtracted from b,
2 is multiplied by c, 2 is divided by d, and the positive
square root is taken of e.

a+2=b-2=2=%=+/
a+a+4+5+1+2+4+a+4a+4=100
.2a% + 17a — 174 = (2a + 29)(a — 6) =

S.a=6,b=10,c=4,d = 16,¢e = 64
29

Explain the rejection of the resulta = — 5

5-14 Two trains, each traveling uniformly at 50 m.p.h., start toward

5-15

each other, at the same time, from stations A and B, 10 miles
apart. Simultaneously, a bee starts from station A, flying parallel
to the track at the uniform speed of 70 m.p.h., toward the train
Jfrom station B. Upon reaching the train, it comes to rest, and
allows itself to be transported back to the point where the trains
pass each other. Find the total distance traveled by the bee.

We designate by X the point where the bee alights upon the train
from B. (See Fig. S5-14.) If h designates the fractional part of one

70 h 50 h
f—)_—Y_H
A B
5 M X 5
$5-14
hour dunng which the bee flies, 70h + 50h = 10, h = — and
AX = (mlles) The distance it is transported back is XM =
5 — 50 (12) (mlles) The total distance is, therefore,

+ == 6— (mlles).

NOTE: M is the midpoint of AB.

One hour out of the station, the locomotive of a freight train
. 3 .
develops trouble that slows its speed to 3 of its average speed up

to the time of the failure. Continuing at this reduced speed it
reaches its destination two hours late. Had the trouble occurred
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5-16

5-17

50 miles beyond, the delay would have been reduced by 40 minutes.
Find the distance from the station to the destination.

Representing this distance by x (miles) and the normal speed by

r (miles per hour), we have, since T = %, normal time = f
and the actual time = )r—c + 2.

x—r x 50 x —r—50
Therefore, 1 + > =;+2, and 1+7+T =

5 5
§+ g. This pair of equations implies that x = 200 (miles).

Verify.

Two 1trains, one 350 feet long, the other 450 feet long, on parallel
tracks, can pass each other completely in 8 seconds when moving in
opposite directions. When moving in the same direction, the faster
train completely passes the slower one in 16 seconds. Find the speed
of the slower train.

With the conditions given, is it possible for the trains to have
the same speed? Obviously not. So the essential question is,
how fast, relatively, are the ends of the trains being separated
from each other?

Letting f (feet per second) represent the speed of the faster
train, and s (feet per second), the speed of the slower train, the
relative speed, when the trains are going in opposite directions,
is f + s, and the relative speed, when they are going in the same
direction, is f — s. In either case, the distance traveled is
350 4+ 450 = 800 (feet).

Since (relative) rate X time = distance, we have (f + 5)8 =
800 and (f — s)16 = 800. This pair of equations is easily solved,
yielding the values f = 75 and s = 25 (feet per second).

The equation 5(x — 2) = 2—77(x + 2) is written throughout in
base 9. Solve for X, expressing its values in base 10.

METHOD I: We work throughout in base 9. Multiplying both sides
of the equation by 7, we have 38(x — 2) = 27(x + 2), 38x —
77 = 27x + 55,11x = 143, x = 13 (base 9).". x = 12 (base 10).
METHOD II: We translate into base 10. Multiplying both sides of
the equation by 7, we have 35(x — 2) = 25(x + 2),35x — 70 =
25x + 50, 10x = 120, x = 12 (base 10).



Equations, Inequations, and Pitfalls 109

5-18 Find the two prime factors of 25,199 if one factor is about twice
the other.

Let the factors be g and b witha = 2b. Thenab =~ 2b% =~ 25200,
b2 = 12,600, b = 110. Since b is prime, b % 110 or 111 or 112.
Try b = 113. Since 25,199 = 113 = 223, the factors are 113
and 223.

Challenge Find the three prime factors of 21,931 if the three factors
are approximately in the ratio 1:2:3.

Let the factors be a, b, ¢ with b = 24 and ¢ = 3a. Then
6a® ~ 27,931, a® ~ 4655. Since 163 = 4096 and 173 =
4913, we may take a = 17. Since 27,931 =+ 17 = 1643,

then bc ~ 3 b? = 1643, and b2 ~ 1095. Therefore, b ~

33, and since b = 2a, the choice for b is narrowed to 31
or 37. Of these two, 31 is an exact divisor of 1643, with a
quotient 53, while 37 is not. The factors are, therefore, 17,
31, and 53.

5-19 When asked the time of the day, a problem-posing professor
answered, “‘If you add one-eighth of the time from noon until now
to one-quarter the time from now until noon tomorrow, you get
the time exactly.”” What time was it?

Let A (hours) represent the time interval from noon to now.
Sgh+zQ4—h=h h=5. The time was 5:20 PM.
In essence, this problem is equivalent to the following. If to %
of a given quantity, you add 6 and then subtract % of the quantity,
the result equals the original quantity, x. In symbols,
4@ -x=x
Challenge 1 On another occasion the professor said, “If from the
present time you subtract one-sixth of the time from now

until noon tomorrow, you get exactly one-third of the time
Jfrom noon until now.” Find the present time.

1

h—3Q4—h)=3h

Wi

Time: 4:48 p.M.
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5-20

5-21

1 1 .
Solve X + y = % Jor integer values of x, y, and z.

2

4
T —, Fory
2
must be integral. Let w = 2 so that
X — 2 X —2

X = z+§, and y = z + w. Hence, both x and y will be

Expressing y in terms of x and z, we have y = z 4+

z2

to be integral

integers satisfying the given equation if z = kw, w an integer,

k = 21, £2,.... (Does this generate all solutions?)
ILLUSTRATION 1: Let w =1,k = 1.Thenx =2,y =2,z =1,
and% + % = 1.

I

ILLUSTRATION 2: Let w =3, k= 5. Then x = 90, y = 18,

1 1
zZ = 15,and§+ﬁ=—5-

1
ILLUSTRATION 3: Let w = —2, k = 1. Then x = —4, y = —4,
e o and_l_1__1
z=—saMd =g —2= 73
ILLUSTRATION 4: Let w = —5,k = —2. Thenx = —10,y = §,
1 1 1
zZ = 10,and—f(—)+5= f(—)
ILLUSTRATION 5: Investigate the case of w = —5,k = —1.

Prove that, for the same set of integral values of x and 'y, both
3x + y and 5x + 6y are divisible by 13.
y

Let k = 3x + y, k an integer, so that x = k 3 - Since x is
prescribed an integer, k%y must be an integer. Let u = k ; z,
sothat x = wand y = k — 3u.

By substitution we have 5x + 6y = Su+ 6k — 18u =
6k — 13u. Since we are concerned with divisibility by 13, let
k = 13m. Therefore, 3x +y=3u+k — 3u= 13m, and
5x + 6y = 13(6m — u), both divisible by 13 for the values
x = uand y = 13m — 3u(m is an integer).

Start with the second expression 5x + 6y and proceed in an
analogous manner to obtain Sx 4+ 6y = 137 and 3x 4+ y =
13(—2n + v), both divisible by 13 for x = —13n 4+ 60 and
y = 13n — 5v (v is an integer)

ILLUSTRATION: Let u =3, m= 2. Thenx =3,y =26 -9 =
17. Hence, 3x + y =94+ 17 = 2-13, and 5x + 6y = 15 +
102 = 9-13.




Correspondence: Functionally Speaking 111

6 Correspondence: Functionally
Speaking

6-1 Define the symbol f(a) to mean the value of a function f of a variable
n when n=a. If f(1) =1 and f(n) = n + f(n — 1) for all
natural numbers n > 2, find the value of £(6).

Rewrite the formula asf(n) — f(n — 1) =n.  f(6) — f(5)
By “telescopic” addition the left side  f(5) — f(4)
becomes f(6) — f(1). The right side is f(4) — f(3)
243444546 =20 Therefore,  f(3) — f(2)
f(6) = £(1) + 20 = 21. Sf@ -1

wonn
NWE L

Challenge 2 If f(1) = 1 and f(n) = n 4 f(n — 1) for all natural
numbers n > 2, show that f(n) = %n (n + 1)

Rewrite the equation f(n) = n 4+ f(n — 1) as f(n) —
fn—1) =n.
Sy —fn—-1NH=n
Sn—1D—f(n—-2)=n-—1
Sn—=2)—f(n—-3)=n—-2

fG—-f2=3
S@Q-s)y=2
By “telescopic” addition of these n — 1 equations, the

left side becomes f(n) — f(1). The right side is 2 + 3 +
-+ - 4 n. Therefore,

f@W=fO+2+4+3+--+n
=142434+:---4+n

—2n@+1)  (See Appendix VIL)
When a sequence is defined by giving the initial term (or

initial terms) and a formula for finding the successor of
any term, we say that the sequence is defined recursively.
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Each of the following (partial) tables has a function rule associating
a value of n with its corresponding value f(n). If f{(n) = An + B,
determine for each case the numerical values of A and B.

@ n|fm) ® n|f@) () n|f(m) @ n|f@ (e n[fm)
111 11 3 1 31 .1 3
2| 2 2| 2 2| 0 Zl % %2
11 2 1] 4 111 1 1] ,1
33 3] 3 3| 3 2% 3 %13
3| 2 2| 1 1] 1 2 i
51 s 51 s 4l 2 4 4

Some of this can be done by inspection. For example, in (a) we
notlccthat +§— 1, —+§= 1,%+§= 1l..n4 f(n) =1
sothatf(n) =1 —n, A= —1,B=1.
.3 1 1 7 2
In (b)wcnot1cc§—§= 1,§—§= ,'5'—3=1
S.f(my—n=1sothatf(n)=n+1,4A=1,B=1
For more difficult cases, a formal procedure may be required.
We illustrate for (¢). Using values in the table, we determine that

0=3;4+B, )

=§A+a (1)

(PSRN

Subtract equation (II) from equation (I).

—

-3 éA therefore, 4 = —2.
0= —14B;s0B=1andf(n)=1— 2n.

w

Note that, in this formal procedure, only two sets of values
need be used. The third is useful for checking the accuracy of the
work. For example, if it appears that f(n) = 1 — 2n, Then

% 1—-2 (%) , % = %conﬁrms the validity of the formula.
Do tables (d) and (e), either by inspection or by a formal proce-

dure. The answerto (d)is f(n) = n + %,and to(e) f(n) =n — %-

In a given right triangle, the perimeter is 30 and the sum of the
squares of the sides is 338. Find the lengths of the three sides.
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Letting the lengths of the hypotenuse and the legs be designated
by ¢ and a and b, respectively, we have (Pythagorean Theorem)

c? = a% + b?; thus, ¢2 4+ b% + a® = 2¢% = 338
c.¢2 =169, ¢c = 13, and a% + b2 = 169.

Using the remaining given information we have

at+b+c=30,a4+b+4+13=30,a+b=17,a=17—b>
S (17 — b)? + b% = 169, b2 — 17b + 60 = 0,
b—-12)b -5 =0.

So b is either 12 or 5, and a, accordingly, is either 5 or 12, The
sides are, therefore, 5, 12, and 13.

Challenge Redo the problem using an area of 30 in place of the perimeter
of 30.

Repeating the first part of the solution above, we have
¢ = 13 and a? 4 b = 169. Since 3 ab = 30, 2ab = 120.

By addition a2 + 2ab + b% = 289, and by subtraction
a% — 2ab + b2 = 49.

Soa+b=17,a—-b=7..a=12,b= 5.

We could with equal right say, b +a = 17,b —a =17
.b =12, a = 5. It is immaterial which leg is identified
by a.

Why do we reject the values —17 and —7 when taking
the square roots of 289 and 49, respectively?

6-4 A rectangular board is to be constructed to the following specifi-
cations.
(a) the perimeter is equal to or greater than 12 inches, but less
than 20 inches
(b) the ratio of adjacent sides is greater than 1 but less than 2.
Find all sets of integral dimensions satisfying these specifications.

METHOD I: Represent the larger and smaller dimensions by x and
y, respectively. In Fig. S6-4 are pictured the four inequalities:
M2x+2y<200rx+y<10)2x+2y > 120rx+y 26

(3)§> 1(4)’y—‘ <2
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The common part of the four regions represented by these ine-
qualities is the shaded quadrilateral.

The required sets are the coordinates of the interior lattice
points, namely, (4, 3), (5, 3), and (5, 4). Check these three sets of
dimensions against the given information.

METHOD II:

Sincex+y <10,y <10 — x
Sincc§> Ly<x
Sincex+y> 6,y>6 —x
Sincc§<2, 2y > x

}.'.2y< 10and y < 5.
]..3y> 6and y > 2.

Consequently, the possibilities for y are 3 and 4. Since y < x
but 2y > x, the possible values for x are 4 and 5. The acceptable
combinations are, therefore, (4, 3), (5, 3), and (5, 4).

x2
1+ x¢

Find the range of values of F = Jor real values of x.
F is never negative. (Why?)
The numerator is least when x = 0, and when x = 0, the
value of the denominator is 1. Therefore, F(minimum) = 0.
One way to find F(maximum) is as follows. By dividing

x2
TX‘ becomes F T
. F will be largest when the denominator x>+ —

numerator and denominator by xZ, F =
1

1

x2 4+ pors

is least.
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. 1 1 . 1
2.1 _ 2 4 2 2 _ 2.
Since x*- 5 =1, the sum x* + 5 is least when x* = el

that is, when x = +1 or — 1. (See Appendix II1.) For these values

of x, x2 + % = 2. Therefore, F(maximum) = % .

The range of values of F is the interval [0, %] .

2x + 3
X+ 2

Challenge Find the largest and the least values of f = SJorx > 0.
Compare your results with the following:
2x +3 1 1
= When x = 0, f = 15 , the least

=2 -
value. As x grows larger without bound, the fraction

f—x+2 x+2°

x <+ 2
grows smaller. Therefore, f grows larger, approaching the
limiting value 2. A maximum value for f is not achieved.
The value 2 is designated a supremum, a least upper
bound.
The situation is pictured in Fig. S6-5.

f
2 f=2
x=-=2 1% ]
o
II
v
-2 M1 0 1 2 g
1 I Jl I
[ 1f ] | 1]
$6-5

6-6 Determine the largest possible value of the function x + 4y
subject to the four conditions: (1)5x + 6y < 30(2)3x + 2y < 12
Ax=20@#Hy=20.

Constraints (1), (2), (3), (4), jointly, are represented as the shaded
area in which we must find the maximum value of x 4+ 4y. See
Fig. S6-6. The equation x + 4y = k represents a family of
parallel lines, some of which intersect the area in question.

From (1) we have y < 5 when x = 0, and from (2) we have
y £ 6 when x = 0. Hence, the largest permissible value of y
is 5, occurring when x = 0.
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y
-6 —
-5 S~
-4 p T~ | T +ay=24
- xTdy=
3 T x+4y=20
-2
\\
-1 x+4y=12
X
0] "1=2.3 4\ 5~6N7
l I [ S| x+4y=4
x+4y=0
S6 6

It follows that the maximum value of x + 4y, subject to the
given constraints, is 20.

Let us define the distance from the origin 0 to point A as the length
of the path along the coordinate lines, as shown in Fig. S6-7, so
that the distance from 0 to A is 3.

Starting at 0, how many points can you reach if the distance,
as here defined, is n, where n is a positive integer?

When n = 1, there are obviously 4 points on the coordinate
axes. When n = 2, there are 8 points (2 - 4), one in each quadrant
and four on the axes.

We can now guess that the answer is 4n. Let us prove it.
When n = 3, the 12 points (3 -4) reached have coordinates
(3,0, 2,1, (1,2), (0,3), and their reflections in the x-axis,
the y-axis, and the origin, namely, (2, —1), (=2,1), (—2, —1),
1, -2), (—1,2), (—1, —2), and (-3, 0) and (0, —3).

We note that, with respect to integer addition, the number 3
has four partitions: 3 4+ 0,2 4+ 1, 1 4 2, 0 4 3. These give us



f(1)=2 f(2)=4
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the four points (3, 0), (2, 1), (1, 2), (0, 3). Corresponding to (2, 1)
are the three reflections (2, —1), (—2, 1), (—2, —1); correspond-
ing to (1, 2) are the three reflections (1, —2), (—1, 2), (—1, —2);
corresponding to (3, 0) is the single reflection (—3, 0); and cor-
responding to (0, 3) is the single reflection (0, —3). The total
number of pointsis 4 + 4 4+ 2 + 2 = 12.

Since4=44+0=34+1=24+2=1+4+3=0++ 4, we
may guess that the total number of paths is 4 + 4 4+ 4 4+ 2 4+
2 = 16. Verify this.

For the general case we haven =n4+0=Mn - 1)+ 1 =
mn-2)+2=---=14m—1)=0+4n, atotal of n + 1
partitions. The n — 1 points, (n — 1,1), (n —2,2),...,
2,n — 2), (1,n — 1), together with their reflections (3 each)
account for 4n — 4 paths. Four additional paths are provided by
(n, 0) and its reflection, and (0, n) and its reflection. The total is
4n—1)+2+2=4n

You may prefer this alternative view. Since there are n + 1
partitions, we are provided with n 4+ 1 points of which n — 1
points have three reflections each, and two of which have one
reflection each. Hence, the total number of paths is 4(n + 1) —
2—2=4no0rdn—-1H+24+2=14n

Given n straight lines in a plane such that each line is infinite in
extent in both directions, no two lines are parallel (fail to meet),
and no three lines are concurrent (meet in one point), into how many
regions do the n lines separate the plane ?

METHOD 1: Let f(n) denote the number of regions into which n
such lines separate the plane. By observation, f(1) = 2, f(2) = 4,

=1

1]

v Vil

$6 8a S6 8b $6 8¢

We note that a second line added to Fig. S6-8a splits each of
the two regions in two; hence, the second line creates two addi-
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tional regions. A third line added to Fig. S6-8b splits each of
three regions in two and creates three additional regions. Similarly,
a fourth line added to Fig. S6-8c splits each of four regions in
two, thus adding four regions. Try it!

Let us, therefore, assume that an n-th line added to the dia-
gram with n — 1 lines creates n new regions, and proceed to
derive, in terms of n, an explicit formula for f(n). By telescopic
addition (see Problem 6-1),

fy=fM)+2+3+--+n
=2+4+24+34--+n

1+ 0 42+34 - +n)

1+%”("+ D (See Appendix VIL.)

n4+n+2
2

Checking, we find that this formula gives us the known values
forn =1, 2, 3.

If we now assume that the formula is correct for a natural
number k > 3 (it could just as well be k£ > 1), we can show that
it is correct for the successor of k, namely, k + 1. (See Appendix
VIL)

k4+k+2

S+ =f0)+k+1="TE2 kg
_k+k+242+2 ((k4+1D24+G(+D+2
- 2 - 2

Since k + 1 is the successor of k (where k > 1), the formula
holds for all natural numbers.

METHOD 11: By observation we obtain f(1) = 2, f(2) = 4,
S@G =1/4 =1L

n=1 n=2 n=3 n=4
£(n) 2 4 7 11
Af(n) 2 3 4
A% (n) 1 1 (Constant)

The line Af(n) shows the first differences derived from the line
f(n), and the line A%f(n) shows the first differences derived from
the line Af (n), or the second differences derived from the line £ (n).
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Since the second differences are constant we represent f(n) by
a third-degree polynomial f(n) = An® + Bn% + Cn + D, with
the numerical values of 4, B, C, and D to be determined.

When n

n = 4 we have 11

= lwehave 2= A4+ B+ C+ D,
2wehave 4 = 84 4+ 4B+ 2C+ D,

n=3wehave 7 =274+ 9B + 3C + D,

]

644 + 16B + 4C + D.

The solution of this system yields 4 = 0,B = 3,C = 3,D = L.

Challenge 1

Challenge 2

.‘.f(n)=%n2+%n+ 1 ="2+++2

Let there be n = r + K lines in the plane (infinite in both
directions) such that no three of the n lines are concurrent,
but k lines are parallel (but no others). Find the number of
partitions of the plane.

Let f(r, k) denote the number of separate regions. Since
the k-th parallel crosses r lines, it creates r + 1 new
regions, so that f(r,k) = f(r,k — 1) + r + 1. Using
telescopic addition on the k equations,

fr k) —frk—1)=r+1
f(r’k—l)'—f(r,k—Z).—-_r_i_l
[k =2 —frk—3)=r+1

£ —fE ) =r+1
JS@, D) —f(@r,0=r+ 1.
We obtain f(r, k) — f(r,0) = k(r + 1), so that
£ k) = £, 0) + k(r + 1)

Butf(r,0) = () = ~F7+2,
therefore, f(r, k) = # + k(r + 1)

Let there be n straight lines in the plane (infinite in both
directions) such that three (and only three) are concurrent
and such that no two are parallel. Find the number of plane
separations.
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Let f(n — 3, 3) denote the number of regions of separa-
tion. Consider a typical region R bounded by three lines,
illustrated in Fig. S6-8d. Let /> and /3 meet in point P.
Translate or rotate /, so that it goes through P; the
region R is eliminated.

=33 =" o tn 1)
A I
R
P I
/ AN
$6-8d

6-9 Define g— as a proper fraction when g < 1 with N, D natural

numbers. Let f(D) be the number of irreducible proper fractions
with denominator D. Find f(D) for D = 51.

First we note that, at most, there are 50 possible numerators
beginning with 1 and ending with 50.

Now we must remove the reducible cases. Since 51 = 3- 17,
then 3k < 51, k < 16, so that there are 16 reducible fractions
with multiples of 3 in the numerator. Similarly, 17L < 51, L < 2,
so that there are 2 reducible fractions with multiples of 17 in the
numerator.

SfMD)y=(@¢6lLl—-1D— (16 +2) =32
Challenge Find f(D) for D = 52.

Since 52 = 22%- 13, therefore, 13k < 52, k < 3, 2L < 52,
and L < 25. However, the case 26 = 2 - 13 is duplicated,
S SfDy=B2-D+@5+3-1)= 24
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7 Equations and Inequations:
Traveling in Groups

Let the lines 15x + 20y = —2 and x — y = —2 intersect in
point P. Find all values of k which ensure that the line 2x + 3y =
k2 goes through point P.

The solution set of the pair of equations 15x + 20y = —2
and x — y = —2is{x = —g—,y = g} Therefore, 2x + 3y =

k? implies that 2 (— g—) +3 (g) = k? so that k% = 0 and,
hence, k = 0.

Let (x,y) be the coordinates of point P in the Xy-plane, and let
(X, Y) be the coordinates of point Q (the image of point P) in the
XY-plane. If X = x + yand Y = x — y, find the simplest equa-
tion for the set of points in the XY-plane which is the image of the
set of points x> + y2 = 1 in the xy-plane.
Since X = x + y, X2 = x2 + 2xy + y?%;andsince Y = x — y,
Y2 = x? — 2xy + y2. Therefore, X% 4+ Y2 = 2(x% + y?). Since
x4 y? =1,2(x%2 4+ y*) = 2. Hence, x2 + y%2 = 2.

In geometric terms, the image set is a circle with center at
(0, 0) and a radius of length v/2.

The numerator and the denominator of a fraction are integers
differing by 16. Find the fraction if its value is more than g but

4
less than 7

Let n represent the numerator of the fraction F. Since F < 1,
the denominator is greater than the numerator, and so n + 16
represents the denominator.

Smce5< S5n + 80 < 9n, 80 < 4n, and 50 20 < n.

n+16’

Since, also, +16<— ,Tn < 4n + 64, 3n < 64, andn<21—-

Since n is an integer and 20 < n < 215, n=21.

21
It follows that F = 7
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74 If x+y+2z=k, x+2y+z=%k, and 2x +y + z = k,
k = 0, express x> + y2 + z? in terms of k.

Addition of the three equations yields 4(x + y + z) = 3k.

3k
Sx+ytz=p;

(x+y+z)2=x2+y2+22+2(xy+yz+zx)=%

Subtraction applied to the given equations in pairs yields y —

z=0, x—y=0, x —z=0. Therefore, y2+ z2 = 2yz,

x% 4+ y? = 2xy, x> 4 z% = 2zx, so that 2(xy + yz + zx) =
9k?

22 + 2 4+ 22). 3P+ y2 + 2% = 16> and x* +y? +
2 _ 3k,
T 16

Challenge 1 Solve the problem if x + 2y + 3z =k,3x + y + 2z = k,
and2x + 3y +z=k k# 0.

Addition of the three equations yields:
6x+y+2)=3kandx+y+2z= ’i‘

k2

G+y+22=x+y’+ 22+ 2y +yz+xz5) ="

Subtracting the first given equation from the second, we
have 2x — y — z = 0 so that y + z = 2x. Subtracting
the second given equation from the third, we have —x +
2y — z = 0 so that z + x = 2y. Subtracting the third
given equation from the first, we have —x — y 4+ 2z =0
sothatx 4+ y = 2z.Hence, y2 + 2yz + 22 = 4x2,2%2 +
2zx + x2 = 4p? and x? + 2xy + y? = 472
Therefore, 2(xy + yz + zx) = 2(x? + y® + z?),

2 2
-'-3(x2+y2+22)=% so that x2+y2+z2_—_'1‘_2-

Challenge 2 Show that both the problem and Challenge 1 can be
solved by inspection.
PROBLEM: System satisfied for x = y = z = s
. 2 2 2 __ 3_k2 .
Soxt 4y 4z = 16
CHALLENGE: System satisfied for x = y = z = %

k2
CoxP izt = g5
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Why are there no integer solutions of x* — 5y = 27?

Rewrite the equation as x2=5y+27=5(+5)+2=
5z + 2, where z = p + 5. The integer x can take one of the
forms 5m,5Sm + 1, 5m + 2,5m — 1, 5m — 2.

CASEI: x2 = 5z + 2 5% 25m? since, upon division by 5, the left
side yields the remainder 2 while the right side yields the re-
mainder 0.

CASES II AND 1V: x% = 5z 4+ 2 # 25m? & 10m + 1, since then
the respective remainders are 2 and 1.

CASES IIl AND V: x2 = 5z 4+ 2 # 25m? & 20m + 4, since then
the respective remainders are 2 and 4.

Civic Town has 500 voters, all of whom vote on two issues in a
referendum. The first issue shows 375 in favor, and the second issue
shows 275 in favor. If there are exactly 40 votes against both issues,
Jfind the number of votes in favor of both issues.

METHOD I: The number of votes against either issue is 125 +
225 — 40 = 310. (Explain the subtraction of 40.) Therefore,
500 — 310 = 190 votes were cast in favor of both issues.

METHOD It: Let x be the number of voters in favor of both issues,
let y be the number of voters in favor of the first issue but against
the second, and let z be the number of voters in favor of the
second issue but against the first. In Fig. S7-6 the information is
shown in tabular form.

275 225

I 1L} For | Against

375 For x y

125 | Against | z | w = 40

x+y=375,x4+2=275y+ 40 = 225,z + 40 = 125

Therefore, y = 185, z = 85, x = 190 (number in favor of both
issues).
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7-7 How do you find the true weight of an article on a balance scale
in which the two arms (distances from the pans to the point of
support) are unequal ?

Let x(pounds) be the weight of the article, d,(inches) the length
of the right arm, and d,(inches) the length of the left arm.

Place the article in the right pan and let it be balanced by a
weight w,(pounds) in the left pan. Then xd; = w,d»(Principle of
Moments). Place the article in the left pan and let it be balanced
by a weight wy(pounds) in the right pan. Then xd, = wod,.

Therefore, x2dids = wiwodids, X% = wiws, X = VW Wa;
that is, the true weight of the article is the geometric mean of the
two weights used. (See Appendix IV.)

Challenge Suppose it is known that the arms of a balance scale are
unequal; how do you determine the ratio r of the arm-lengths ?

Place in the right pan a known weight; for convenience,
choose a 1-1b. weight. Find the weight w,(pounds) needed
to produce balance. Therefore, 1d, = wid;. Now, place
the 1-1b. weight in the left pan, and let wo(pounds) produce

balance. Therefore, 1ds = wad;.

d, ds d, dy
dz’ w2—d1’ wl+w2—z+dl_

We have w; =
1
r+--
r dy . .
If wy + ws is known, r (= 172) is determined.
61
ILLUSTRATION: If w; + wy = 30 (pounds), then r + - =

1

r
61 ., _ ol - ( §)(_§)_ =3
30 —30+l-0, r—eg)\r S—O,r—Gor

r =

wion

7-8 Solve in base 7 the pair of equations 2x — 4y = 33 and3x +y =
31, where X, y, and the coefficients are in base 7.

METHOD 1: (working in base 7)

2x — 4y = 33 ¢y
3x+y =31 an
15x + 4y = 154 (4 times 11) {1
20x = 220 a + 1) av)

x=1l,y= -2



7-10

Equations and Inequations: Traveling in Groups 125

METHOD 11: (working in base 10)

2x — 4y = 24 1))
Ix+y=22 an
12x + 4y = 88 (4 times II) (41}
14x = 112 I+ 1mn av)

x = 8 (base 10) = 11 (base 7)
y = —2 (base 10) = —2 (base 7)

Given the pair of equations 2x — 3y = 13 and 3x 4+ 2y = b,
where b is an integer and 1 < b < 100, ler n2 = x + y, where x
and y are integer solutions of the given equations associated in
proper pairs. Find the positive values of n for which these conditions
are met.

Eliminate y from the given equations to obtain 13x = 26 + 3b,
orx =2+ % . Eliminate x from the given equations to obtain
13y = —39 4 2b, or y= =3+ 2. Therefore, x+y=
S — 1.Whenb=13n?=x+y=4 andson= 2 When
b=126,n2=x+y=9,andson = 3.

For the remaining multiples of 13 between 1 and 100, we fail to

obtain for x 4+ y the square of an integer. There are, conse-
quently, just two values of #, namely, n = 2and n = 3.

Find the set of integer pairs satisfying the system

3x + 4y = 32
y>«x
y < %x.
METHOD I: (Algebraic) Since y > x, 4y > 4x. 4))
Since 3x + 4y = 32, an
—3x > 4x — 32. O - da
Therefore, 7x < 32, x < 37—2 ,and x < 4,
Since y < %x, 4y < 6x, and (111
—3x < 6x — 32, dam — an

ox > 32, x> 2> 3,
3 < x £ 4 s0 that x = 4 and, consequently, y = 5.
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Check y(=5) > x(=4), and y(=5) < % x(=6).

Also3x + 4y = 32,since 3-4 4+ 4-5 = 32.

METHOD II: (Geometric) The required integral values are on the
segment PoP; of the line 3x 4+ 4y = 32, as shown in Fig. S7-10.

The only set of such integral values are x = 4and y = 5.

BEEEEREN RN

3x4+4y—=32
- J
\\
P: (%g'l?s (ég 3_2)
/ CARAR
N
)/
N
(o} N x
$7-10
7-11 Compare the solution of system I,
x+y+z=15
2x ~-y+2z=038

Xx—2y —z=—02,
with that of system II,

x+y+z=15
2x—y+z=09

x—2y—z= —-02

(M
2
3)

M
@
€)

A small change in the conditions of a problem can make a big

difference in the result!

The systems may be solved by any one of a number of methods.

By the Method of Elimination, we obtain, for System 1,

2x — y = 1.3, by adding equations (1) and (3), and
3x — 3y = 0.6, by adding equations (2) and (3).

This new system yields x = 1.1, and y = 0.9. From either of

the original equations we obtain z = —0.5.
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For System II, a similar procedure yields x = ;—(2) , Y= % ,
12 . .
z=—-73- Therefore, the change in x is ;—8 _2_1 , the
0" 25 2 30 307
change in y is 3030 30’ and the change in z is — 0"
( _y_ 3,
30/ 30
The following information was obtained by measurement in a series
of experiments:
x+y=19
xx—y=14
x —2y = —0.6
x—y=03.

Find an approximate solution to this system of equations.

From a mathematical viewpoint, the system is inconsistent.
However, we cannot reasonably expect “‘exactness” in measure-
ments, and so it is meaningful to seek an approximate solution
to the system.

We consider that each of the constants on the right side of
the equations is ‘““‘in error” by a certain amount, and it is our
purpose to obtain a solution so that the errors are minimized.
There is more than one way to do this; the method used here is
known as the Method of the Mean.

Starting with the assumption that the error in one equation
is neither more nor less weighty than the error in any other
equation, we group the equations, making as many groups as
there are unknowns, in this case, two. Group I consists of the
first and second equations, and Group II, of the third and fourth
equations. By addition within each group, we obtain:

3x = 33
2x — 3y = —0.3.
. . . 11 5
The solution to this system is x = 10°Y 6

These values satisfy none of the equations exactly, but the
sum of the errors is minimized to the value zero, since:
57 1

58 . 58
(1)x+y=3—0w1thanerrorof‘3—0—3—0— 0
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7-13

41 42 1
2 2x—y= —w1th an error of— 0= "2
17 17 18 1
() x — 2y = — gywithanerror of — 3o + 35 = + 55
8 9 1
(4)x—y— w1thanerrorof - 3% "3

Find the maximum and the minimum values of the function 3x —
y + 5, subject to the restrictionsy > 1, x <y, and 2x — 3y +
62> 0.

The conditions stated in the problem confine the values of
the given function f: 3x — y + 5 to the values of x and y deter-
mined by the triangle ¥, ¥,V ; obtained by the intersections of
L{y = x),l:(y = 1),and I3Q2x — 3y 4+ 6) = 0. See Fig. S7-13a.

T111 hl ]
/Lis
Y
PR
-
Wl
rg
Va(—114,1) ) ,
d van [
X
of | [ |
$7 13a

At V, (1, 1), the value of the function fis 3 — 1 + 5=17;
at ¥, (=13, 1), the value of fis —4; — 1 4+ 5= —3; and at
V3 (6, 6), the value of fis 18 — 6 + 5 = 17. At interior points
of the triangle, the value of f is greater than — % and less than 17.

(See proof below.) Therefore, subject to the conditions given,
the maximum value of 3x — y + 5is 17, and the minimum value

of3x—y+5is—%-

The Linear Program Theorem states that the maximum and
minimum values of the linear function f(x, y) = Ax + By + C
occur at vertices of the polygon S where

S=F,nF,n---NnF, and F, = {P|4.x + B,y + C, 2 0}.
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In Problem 7-13 the polygon is a triangle; in Problem 7-14 the
polygon is a hexagon,

y [ |
T
Va(Xa,y3)
2N S
DD AN
n
\ Py(x3,y1)
| e
P.(xny-)%fl(x..;.’)- II
/
0 i X
S$7-13b

PROOF: Consider an interior point Iy (xo, yo) (Fig. S7-13b).
m‘ Fl(xo,J’o) > 0’ Fz(an}’o) > 0) [ ’Fn(anyO) > 0. Let
PP, be a line through /,, intersecting two sides of polygon S
in P, and P, and not parallel to f(x, ) = 0. Since I, € P,P,,
then f(x1, y1) # f(x2, y2), and either f(xy, y1) < f(xo, yo) <
f(x2,y2), or  f(x2,y2) < f(xo,y0) < f(x1,y1). Therefore,
f(x0, yo) is neither 2 maximum nor a minimum value of f(x, p).

Now consider a point, By(xo, yo), interior to a side of S with
vertices Vy(xy, y1) and Va(x2, y2). Then, if f(x1, y1) # f(x2, y2),
either  f(x1, y1) < f(x0, yo) < f(x2,y2), or f(xz, y2) <
f(xo.p0) < f(x1,y1), and if f(x1, y1) = f(x2, y2), f(x1, y1) =
S(x0, yo) = f(x2,y2)

Among the vertices, therefore, there is one such that the value
of f(x, y) is at least as great as its value at any other point on
the polygon and greater than the value at any interior point.
Therefore, the maximum value of f(x, y) occurs at one or more
vertices.

A similar argument holds for minimum value.

7-14 A buyer wishes to order 100 articles of three types of merchandise
identified as A, B, and C, each costing $5, 36, and $7, respectively.
From past experience, he knows that the number of each article
bought should not be less than 10 nor more than 60, and that the
number of B articles should not exceed the number of A articles
by more than 30. If the selling prices for the articles are $10 for
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A, $15 for B, and 320 for C, and all the articles are sold, find the
number of each article to be bought so that there is a maximum

profit.

The conditions of the problem lead to the following statements,

illustrated by Fig. S7-14.

MDx+y+2z=100sothatz= 100 — x — y

(2 Cost=5x+6y+7z2=700 —2x — y

B)10<<x<60, 10<y<60, 10<2<60 so that 10 <
100 — x — y £ 60 and, therefore, 40 < x + y < 90

4 y<x+30

(5) Sales = 10x + 15y + 20z = 2000 — 10x — Sy

(6) Gain = Sales — Cost = 1300 — 8x — 4y, the function to
be maximized

y h Iy
le G=1300—8x—4y L x=10
7/ G(P)=820 l x=60
P1(30,60) G(P,)=1060 I y=10
b
G(P;)=1100 (maximum) |, y=60
[
Iy P»(10,40) G(P)=1020 I x+y=40
| ) I
P3(10,30) P,(60,30) G(P)=780 I xty=80
| |
I NT G(P)=700 I, y=x+30
s P4(30,10)$P;5(60,10)
o x
§7-14

For maximum profit, then, the distribution of the 100 items
bought should be 10 item A, 30 item B, and 60 item C. (See
the solution to Problem 7-13.)
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8 Miscellaneous: Curiosity Cases

I e 11 .
X+VX+T
METHOD 1: By multiplication obtain 5x — 5v/x = 11x +
11/x + 1. Therefore, —3x = 8v/x + 1 9x = 64x + 64,
9x2 — 64x — 64 = 0. Since 9x% — 64x — 64 = (9x + 8) X
(x — 8), either 9x + 8 = 0 or x — 8 = 0. Therefore, x =

— 5 (x = 8 is rejected).
— 11 -
METHOD 11: Since ;— \/x_+— , We may write —X-H =

and so
x — Vx4 1= —11k, and (¢))
x++vx+ 1= -5k, Q1))

where k is a positive constant. By adding (I) and (II) we have
2x = —16k, and so x = —8k. —8k 4+ /1 — 8k = —5k;
that is, »/1 — 8k = 3ksothat 1 — 8k = 9k2, and 9k + 8k —
1 = 0. But 92 + 8k — 1= (9% — )k +1). Therefore 9% —

l=0and k = (k = —1 is rejected). Hence, x = — 5-

5 3

Find all real values of x satisfying the equations:

@) x%x| =

(b) x|x%| = 8, where the symbol |x| means +x when x > 0, and
—Xx when x < 0.

(a) When x > 0, (x%|x| = 8) = (x® = 8) so that x = 2. (The
symbol = is read “implies”.) When x < 0, (x%|x| = 8) =
(—x% = 8)or (x® = —8)sothat x = —2.

(b) When x >0, (x|x% = 8)= (x® = 8) so that x = 2.
Since 8 > 0, x cannot be negative.

Besides these real values of x, there are imaginary values of x.

8-3 Let P(x, y) be a point on the graph of y = x + 5. Connect P with

Q(7, 0). Let a perpendicular from P to the x-axis intersect it in R.
Restricting the abscissa of P to values between 0 and 7, both
included, find:

(a) the maximum area of right triangle PRQ

(b) two positions of P yielding equal areas.
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(a) Designate the area of APRQ by K (expressed in proper units).

Then K = 5 (7 — x)(x + 5) = 5 [36 — (x — 1)?]. The expres-
sion% [36 — (x — 1)?}isamaximumwhenx = 1for0 < x < 7.
.. K(max) = % (6)(6) = 18. An alternative solution for (a): The
area of APRQ is determined by the measure of the segments RP
ﬂq RQ. At all times, the length of RP is x + 5 and the length of
RQ is 7 — x. Their sum is the constant 12. It is known (see
Appendix III) that when the sum of two positive numbers is fixed,

the maximum product of the two numbers occurs when each is
one-half the fixed sum. Therefore, the maximum area is obtained

when RP = RQ = 6, so that the maximum area is% (6)(6) = 18.
The triangle with maximum area is isosceles.

1 1
(b) Kl = 5(7 b xl)(xl + 5), K2 = 5(7 -_ X2)(X2 + 5), and
Kl = Kz.
Therefore, 7X1 + 35 — x12 - 5X1 = 7X2 + 35 — X22 —_ 5X2,
and 50, 2(x; — x2) = x12 — x2% = (x1 + y2)(x1 — y2).
Since we are assuming that x; = x,, we have 2 = x; + x2
(dividing by x; — x3). One possibility is x; = 0, x; = 2, so that
Py(0,5) and Py(2,7). A second possibility is P, (% , 5%) ,
P, (% s 6%) . There are others, of course.

Find the smallest value of x satisfying the conditions: x3 + 2x? = a,
where X is an odd integer, and a is the square of an integer.

x% 4+ 2x% = x%(x + 2) = m*n? where m, n are integers.
.. x + 2 = m? or n2 The smallest odd value of x, such that
x + 2 is the square of an integer, is x = 7,sincex = lor3or$5
are unacceptable.

If we remove the restriction, “smallest value of x,” there are,
of course, an endless number of x-values.

For the case where x is odd and x® + 2x% = 4, we have
x = 2k + 1. Therefore, 2k + 3 = n%, k = '? . Taking, in

turn,n = 3,5,7,...,wehave k = 3,11, 23,...,and x = 7,
23,47,....
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Challenge 1 Change “odd integer” to “‘even integer greater than 2’
and solve the problem.
Where x is even and x3 + 2x? = g, we have x = 2k.
2 -
Therefore, 2k + 2 = n?, k = = 3 2
n=246,... wehavek =1,7,17,...and x = 2,
14,34, . ..
Challenge 2 Change x3 + 2x% to x3 — 2xZ, and then solve the problem.
Where xis odd and x3 — 2x2 = @, we have x = 2k + 1.
2
Therefore, 2k — 1 = n?, k = = ; Ly Taking, in turn,
n=135...,wehave k=1,5,13,...and x = 3,
11, 27, ....

Challenge 3 In Challenge 1 change x3 + 2x? to x® — 2x2 and solve
the problem.

. Taking, in turn,

Where x is even and x3 — 2x2 = g, we have x = 2k.
2

Therefore, 2k — 2 = n%, k = = 5 2 Taking, in turn,

n=246,...,wehavek =3,9,19,...,and x = 6,

18,38,....

-5 A B . ..
85 oy =7—1tx 17 IS true Jor all permissible values of x,

find the numerical value of A 4 B.
Multiply the equation by x2 — 1. Then,
3x—5=Ax+ 1)+ Bx — 1) = x(4+ B)+ (4 — B).
A+ B=3

Is there a detectable connection between the sum of the numera-
tors A and B and the original numerator? Let’s find out!

Kx + L A B
-1 -x-1txzi°Kx+tL=x(A+B)+(4-B
A+ B=K
. . . 2x + S5 A B
Verify this conclusion for 5—— = prvo e S

What modification in the conclusion that 4 + B = K, if any,
nu+5_ 4 B
x2—4 x4+2 x -2

must be made if the problem reads
ANSWER: None
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8-8

SOLUTIONS

What modification follows if 25+ — -4 z

X
2

= "
-1 2x+1+2x—1'

ANSWER: A + B =1

. . 2x + S A B
Generalizing further, try a2x2+— = o +—-

2 _ K
a

ANSWER: A + B = -

il

2x+ 5 A B C
Aharderone!)—‘C‘TD=;_*_;‘___*___14_)_‘____1
ANSWER: 2x + 5 = x(A + B+ C) 4+ x(C — B) — 4

SA4+B4+C=0

. x2—2x -5 A B C
Aneasuzrone!x(xz—_])=;.*.x_l_+_x+l
ANSWER: A + B+ C =1

. x2 —2x+ 5 A B C
Slightly harder! o= =TTt

ANSWER:A+B+C=%

Study the last 3 cases for a pattern. Compare the degrees of
the polynomials in the numerator and the denominator.

For what integral values of x and p is (x2 — x 4+ 3)(2p + 1) an
odd number ?

Since each of the factors is odd for all integers x and p, the
product is always an odd number.

Express the simplest relation between a, b, and c, not all equal, if
a2 —bc = b? —ca = c? — ab.

Since a2 — bc = b2 — ca, ca — bc = b%? — a?. Therefore,
cla— b= b+ a)b—a).If a = bthen c = —(b + a), that
is, a + b 4+ ¢ = 0. What change in procedure do you suggest if
a=>b?

Find the 1wo linear factors with integral coefficients of P(x,y) =
x2 — 2y? — xy — x — vy, or show that there are no such factors.

METHOD I: We have P(x,y) = x2 — 22 —xy —x—y. If
there are linear factors we may write them as x + 4,y + By,
and x + Ay + Ba, with the numerical values of 4, A5, B, B,
to be determined.
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Equating the two representations of P(x, y), we have

x2 -2 —xy—x—y=(x+ A1y + B))(x + Azy + By)
= x% 4+ A1 429 + (A, + A2)xy + (B1 + B)x
+ (41B; + A3B)y + BB,

o=2 = A4, -1 = A + Az, -1 = B, + BZ, -1 =
A\Bs + A3B,, 0 = B,B,. Therefore, either B, = 0 or By =
(Why not both?) Choose B, = 0, then B, = —1, A4,
A2 = —2.

Check to see if —2 = 4145 = (1)(—2).

Therefore, one set of factors is x + y and x — 2y — 1. If we
choose B, = 0, we obtain the same set of factors. It follows that
this set is unique.

f
-

METHOD I1: You may be clever enough (or lucky enough) to see that

P(x, y) can be written as

XX =y =y —xy—x—y=(x+Nx-y)—yr+x) -
(x + ).

SPx )=+ -y -y - D=+ -2y - 1)

Find the sum of the digits of (100,000 + 10,000 + 1000 + 100 +
10 + 1)2.

This problem offers a good opportunity to show the advantage of
‘“generalizing” a problem to arrive at a solution. Consider any
n-digit number aa; . .. a,, n < 9. Then (a; + as + -+ + a,)?

=a;2+ a2+ -+ a,> + 2a102 + 2a1a3 + - -
+ 2a%a; + ¢+ + 2a,_1a,
=2a’+a?+ - +a.2+aa;+aa;+ -
+an_1a.) — (@° + a3+ -+ a.?)
=28, — S,.
The number of digits in S, is 2 - g (n + 1), and the number of
digits in S, is n. There are, therefore, 2 - g n+1)—n=n?

digits in (a; + a2 + -+ + a,)?. Applied to this problem with
n=26 and a, = a; = a3 = a4 = a5 = ag = 1, the formula
yields 62 = 36 as the sum of the digits.
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8-10 How do you invert a fraction, using the operation of addition ?

8-11

Let the given fraction be 2, and let x be such that + x
b+ x

Therefore, a2+ ax = b2+ bx, x(@ — b) = b% — a2
b+ab—a)y,x= —(@@+b),ahb

1~
ne'e

a —
VERIFICATION: m = 22"

b
ILLUSTRATION: Let @ = 3 and b = 8; then x = —11, and
3i-nn_-8_8&8_ 1,
g§—11 -3 3 3
8

How do you generate the squares of integers from pairs of con-
secutive integers?

Possibly the first trial would be the operation of multiplication,
but this trial proves disappointing since the product of two
consecutive integers n(n + 1) = n® + n = m%. Why?

Let us try the operation of addition.

METHOD 1: Wenotethat 0 4+ 1 = 1,4+ 5= 9,12 4+ 13 = 25,
and so forth. The foom4 + 5 = 32,12 + 13 = 52,24 + 25 =
72, and so forth, suggests the generating function 2mn +
(m? + n?) = (m? — n®?%, where m —n=1 and, hence,
(m — n)2 = 1. For example, for m = 4, n = 3, 2mn = 24,
m? 4+ n? =25 and (m%2 —n??=49. For m=5, n= 4,
2mn = 40, m? + n? = 41, and (m? — n?)? = 81

What is the relation between this generating function and
Pythagorean triplets?

METHOD 11: We note that 4 = 4-1, 12 =4-3, 24 = 46,
40 = 4 - 10, and that the second factors 1, 3, 6, 10 are the tri-
angular numbers T, with k = 1, 2, 3, .... (See Appendix VII.)
This suggests the generating function 4T, 4+ (4T; + 1) =

4 sk + D)+ 4k + 1)+ 1=k + D2

For k = 3, we have 24 4+ 25 = 7% = 49,
for k = 4, we have 40 + 41 = 92 = 81,
for k = 5, we have 60 + 61 = 112 = 121.
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8-12 Is there an integer N such that N® = 9k + 2, where k is an
integer?

With respect to the divisor 3, N can be expressed as 3m, 3m + 1,
or 3m — 1 (alternatively, 3n + 2) so that N3 is, respectively,
27m3, 271m® 4+ 2Im%> + 9m + 1, or 27m® — 27m? 4+ 9m — 1
where m is an integer.

CASEI: N® = 9k + 2 # 27m3 since, upon dividing both sides of
the inequality by 9, the remainder on the left is 2 while the re-
mainder on the right is 0.

CASE I: N3 = 9k + 2 > 2Tm® + 2Tm% 4+ 9m + 1 since the
respective remainders, upon division by 9, are 2 and 1.

CASE mi: N3 =9k + 25 21m3 — 2Tm? 4+ 9m — 1. Why?
Therefore, the cube of an integer cannot be expressed in the form
9k + 2, where k is an integer.

Challenge Is there an integer N such that N3 = 9k + 8?
N3=9k+8=9%k+ 1) — 1. Hence, if N=3m — 1,
N3 is of the form 97 — 1 where r = 3m3 — 3m? + m,
and, of the form 9k + 8 wherer = k + 1.

ILLUSTRATION: N =5 .. N3=53=9-13 4 8 = 125.
Here N=3:2—1 so that m = 2. If N = —4, then
N3 = (—4)® = 9(—8) + 8 = —64. Here N = 3(—1) —
1sothatm = —1.

813 Let S, = 1"+ 2"+ 3"+ 4" andlet S;, =1+24+3+4=
10. Show that S, is a multiple of S, for all natural numbers n,
exceptn = 4k wherek = 0,1,2,....

We verify directly that §; = 10, S3 = 30 = 3§y, S35 = 100 =
10S;, and S, = 354, which is not a multiple of S,. Note also that
So = 4 is not a multiple of S;.

We know (Appendix I) that, when a is a positive integer,
a, a% a° ...,a**?! all have the same units digit. Therefore,
a***2 1pa?, a***3 1D4d, and a***4 TDa.

It follows that Sy, = 14%F7 4 24k+r 4 34ktr 4 gsk+rp
"4+ 2"+ 3"+ 4 = S, where r = 1, 2, 3, 4 (or zero). Since
we showed by direct verification that S, is a multiple of 10 for
r =1, 2, and 3, but not for r = 4 (or zero), the conclusion is
valid,
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8-14 A positive integer N is squared to yield N, and N, is squared to

8-15

yield Ny. When Ny is multiplied by N the result is a seven-digit
number ending in 7. Find N.

This problem seems difficult, but it is really quite easy. From the
given conditions, the seven-digit number is N3. We know (see
Appendix I) that the units’ digit of N° is the same as that of N,
so that N ends in 7.

Since 7% < 10° = 100,000, we conclude that N # 7. There-
fore, N has two digits. (Why not three digits, or more?) We must
decide between 17, 27, 37, and so forth.

Since 30% = 24, 300,000, N is less than 30. The choice is now
narrowed to 17 or 27. The selection of 17 is based on the fact that
the difference between 30° and 9,999,999 is very much greater
than the difference between 9,999,999 and 205.

The answer 17 is unique; it can be verified by actual com-
putation.

Let f = mx 4+ ny, where m, n are fixed positive integers, and
X, Y are positive numbers such that xy is a fixed constant. Find the
minimum value of f.

Since m, n are fixed and xy is fixed, (mx)(ny) = (mn)(xy) is a
fixed quantity. We now use the theorem that, if the product of
two numbers is constant, the minimum sum occurs when the

numbers are equal. (See Appendix II1.) Therefore, minimum f

n

. X
occurs when mx = ny; that is, when > m

ILLUSTRATION 1: Let m = 5, n = 3, xy = 60. Therefore, x:y =
3:5,x: (2) = 3:5.

x2=136,x=6p=10 ..f(min) = 5-6+ 3-10 = 60

ILLUSTRATION 2. Let m = 5, n = 3, xy = 100.

f(min) = 5v/80 + 3 (:1/% = 10v/60
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9 Diophantine Equations:
The Whole Answer

A shopkeeper orders 19 large and 3 small packets of marbles, all
alike. When they arrive at the shop, he finds the packets broken
open with all the marbles loose in the container. Can you help the
shopkeeper make new packets with the proper number of marbles
in each, if the total number of marbles is 2247

Represent the number of marbles in a large packet by L and the
number in a small packet by S. Then 19L 4+ 3S = 224, S = 74 —

6L + # . Since S and L are positive integers, Z—TL must be
an integer. If L = 2, not a likely value, 2—;£ = 0; otherwise
2 ; L is negative. Let us put 2 ; L_ —ksothat L = 2 4 3k.

Since 74 — 6L + 255> 0, 74> 62 + 3k + k so that

k<3 Also, S=74— 62+ 3k) — k =62— 19k. Since
L>S,2+43k> 62— 19k so that kK > 2. Since 2 < k < 3,
k = 3. Therefore, L =2+ 3k =11 and S = 62 — 19k = 5.

The values L = 11, § = 5 satisfy the conditions of the
problem uniquely.

Find the integral solutions of 6x + 15y = 23.

METHOD I: The left side of the equation is divisible by 3, but the
right side is not. Hence, no solutions in integers.

METHOD I1: Suppose you overlooked the quick method. A formal
5—-3y
6
must be an integer. Letting ¢ =

procedure yields x = 3 — 2y 4+
-3y
6

. To insure the integral
5—3y ,
6

5
nature of x,

W

we obtain y =
be integral.

— 2¢. Since ¢ is an integer, y cannot possibly
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Challenge 1 Solve in positive integers 13x + 21y = 261.

8y — 1 8
x—20—y—y13 . Le t—y13 so that y =
5 1 5 1 -
t+t+ Let u = ’; so that t = u + "51~
3u—l 20+1
Let v = 5 so that u=v + Let w=

20+1 w—l

5 so that v = w +

Since x and y are mtegers, each of 1, u, v, and w is an
integer. When w = 1, we have in succession v = 1,
u=2 t=3,y=25, and x = 12, obtained by sub-
stituting back into the equations given.

The pair x = 12, y = 5 satisfies the given equation.

We now show that the solution is unique. Obviously

2ly < 261 so that y < 12. But y = Bw =3 s

2 ’
B =3 < 12, 13w < 27, w < 2. But w must be odd.
Therefore, the only permissible value is w = 1 and,
consequently, there is only one value for y.

9-3 A picnic group transported in n buses (where n > 1 and not prime)

9-4

to a railroad station, together with 7 persons already waiting at the
station, distribute themselves equally in 14 railroad cars. Each bus,
nearly filled to its capacity of 52 persons, carried the same number
of persons. Assuming that the number of picnickers is the smallest
possible for the given conditions, find the number of persons in each
railraod car.

Represent by x the number of persons carried by each bus, and
by y the number of persons in each car. Then nx 4 7 = 14y.
Neither x nor n can be an even integer. Since n £ 7, we can try
x = 49, which is a multiple of 7 and close to 52. With this value

for x we havey=%+7?n. Since n must be odd and n>1

and n is neither 3 nor 5nor 7, we tryn = 9. Then y = i + 67 =
32.Check 14 X 32 = (49X 9D+ 7.

Find the number of ways that change can be made of $1.00 with
50 coins (U.S.).
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Let x, represent the number of 50¢ pieces,
xg represent the number of 25¢ pieces,
x3 represent the number of 10¢ pieces,
x4 represent the number of 5¢ pieces,
x5 represent the number of 1¢ pieces.

First we show that x; = O, for if x; = 1, then the remaining
50¢ of the $1.00 must be the value of 49 coins, an impossibility.
And certainly x; cannot exceed 1. The number of pennies x5 =
50 — (x2 + x3 + x4).

EQUATION 1: 25x3 + 10x3 + S5x4 + 50 — (x3 + x3 -+ x4) = 100
EQUATION 2: 5xg + 2x3 + x4 — %(xz + x3 + x4) =10

We now make three observations. In every case the value of
any coin used must be a multiple of 5. (See Equation 1.) The value
of 25x5 + 10x3 + 5x, exceeds 50 so that the value of 50 —
(xg + x3 + x4)is less than 50. (See Equation 1.) x; + x3 + X4
is a multiple of 5. (See Equation 2.)

In tabular form the possibilities are shown below.

KIND NUMBER VALUE Kino NUMBER VALUE
x5 (1¢) 45 45 x5 (1¢) 40 40
x4 (5¢) 2 10 x4 (5¢) 8 40
x3 (10¢) 2 20 x3 (10¢) 2 20
x2(25%) 1 25 50 100

50 100

Let x be a member of the set {1, 2, 3, 4, 5, 6, 7}; y, a member of
the set {8, 9, 10, 11, 12, 13, 14}; and z, a member of the set
{15, 16, 17, 18, 19, 20, 21}. If a solution of x +y + z = 33 is
defined as a triplet of integers, one each for x, ¥, and z taken from
their respective sets, find the number of solutions.

When z =21, x+y = 12; thatis, 1 + 11, 24+ 10, 3 + 9,
or 4 + 8, four combinations. Similarly, when z = 20, the number
of combinations for x + y is 5; when z = 19, the number of
combinations for x + y is 6; when z = 18, the number of
combinations for x + y is 7; when z = 17, the number of
combinations for x + y is 6; when z = 16, the number of
combinations for x + y is 5; and when z = 15; the number of
combinations for x + y is 4. In all, there are 37 possibilities.
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9-6 Ry, Ry, and R are three rectangles of equal area. The length of R,

9-7

is 12 inches more than its width, the length of R is 32 inches more
than its width, and the length of R is 44 inches more than its width.
If all dimensions are integers, find them.

Let v = kyu and let w = kyu, where u, v, w represent, in inches,
the widths of R;, R,, and Rj3, respectively. Then

u(u + 12) = kyu(ku + 32) = kou(kou + 44),

ok %u? 4 32k = kytu® 4 44kqu.

(ky?2 — ko2 = (44ky — 32k)u, u > 0

. Mk — 32k 6 38

Sou= ka2 — ko2 ky — ks ky + ks

Let ky =5 and let ky = 5, ky 4+ ky = 255k — ey =
adb_dbc. We choose ad + bc = 38 and ad — bc = 2. (Why

not6Nad =20 =10-2=5-4andbc = 18 =9-2=6-3 =
18- 1.
Since 0 < k1 < 1,0 < kg < 1, we have

a d b ¢c ki kg u v w
- - - - T T - - -
5 4 6 3 2 48 40 36, accept,
5 1 .
5 4 18 1 B 72 20 18, reject,
0 2 18 1 13 7 144 80 72 reject.

Therefore, the dimensions are 48 and 60, 40 and 72, 36 and 80.

Given x2 = y 4+ a and y? = x + a where a is a positive integer,
find expressions for a that yield integer solutions for x and y.

x*=y+a y>=x+a, so x2 — y2 = y — x. Therefore,

=+ +x—»=0, (x—y)x+y+1)=0. Thus,
x=y or x= —1—y. Therefore, either y2—y—a=0

givingy=w,ory2+y+l—a=0givingy=
—I:i:\/4a—3.

2
For y to be integral, /1 +4a=2n+ 1 and v/4a — 3 =
2m — 1. Thus, a=n?+n=n(n+1, n=0,1,2,..., or
a=m?—m+1l=mim—-—1D+1,m=123,....
QUERY: Do these values of a give independent solutions?
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A merchant has six barrels with capacities of 15, 16, 18, 19, 20, and
31 gallons. One barrel contains liquid B, which he keeps for himself,
the other five contain liguid A, which he sells to two men so that the
quantities sold are in the ratio 1:2. If none of the barrels is opened,
find the capacity of the barrel containing liquid B.

The key to the solution of this problem is to think in terms of the
excesses over 15 gallons. Thus, the capacities are 15 4+ 0, 15 + 1,
154 3,154+ 4,154 5,154 16 (= 30 4+ 1). He cannot keep
any barrel with an even excess over 15. (Why?) This leaves only
the three possibilities 15 4+ 1, 15 4+ 3, 15 4+ 5, which we try
in turn.

We find that the liquid B barrel has capacity 20 gallons, and
that the merchant sells 33 gallons (15 4+ 18) to one man and
66 gallons (16 + 19 + 31) to the other man.

Find the number of ordered pairs of integer solutions (x, y) of the
.1 1 1 P
equation + y=p'Pa positive integer.

1 1 1

T =, Hpx =33 —py—px+p’—p?=0
(x — pO — p) = p°.

Letdy, ds, . . ., d, be the n positive divisors of p2.

2

Thenx — p=d;,i= 1,2,...,n,y—p=%,

2
and x — p= —dy,y —p= — %, yielding 2n solutions from

which we must exclude the case x — p= —p, y — p = —p,
since these imply x = 0, y = 0. Therefore, there are 2n — 1
solutions where 7 is the number of positive divisors of pZ.

1,1 1 . .
ILLUSTRATION: © + = = ¢ where 62 = 36 has the nine positive

divisors 1, 2, 3, 4, 6,9, 12, 18, 36. The number of pairs of integral
solutions is 2:-9 — 1 = 17. To find the solutions, solve the
2
18 pairs of equations x — p = =d;,, y — p = %’—- The set
x—6=—6, y — 6 = —6 yields the unacceptable solution
x =0, y = 0. The solution pairs are (7, 42), (8, 24), (9, 18),
(10, 15), (12, 12), (2, —3), (3, —6), (4, —12), (5, —30), and the
inverse pairs. The pair (12, 12) is self-inverse so that the total
number of solutions is 17.
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9-10 Express in terms of A the number of solutions in positive integers

9-11

of x + y + z = A where A is a positive integer greater than 3.

Consider the following triples (x, y, z): whenx = 1,(1,1, 4 — 2),
1,2,4—3),...,(1,4 — 2, 1), are the 4 — 2 possible solu-
tions. Whenx = 2, (2,1, 4 — 3), (2,2, 4 — 4),..., (2,4 — 3,
1), are the A — 3 possible solutions. When x = 3, (3, 1, 4 — 4),
(3,2,A—5),...,(3, A — 4,1), are the A — 4 possible solu-
tions.... When x = 4 — 2, (4 — 2,1, 1), is the only possible
solution. Therefore the total number of solutions is 1 + 2 +

“t+ 4 (4 —2) = 3(4 — 2)(4 — 1). [See Appendix VIL]

ILLUSTRATION: For 4 = 6, the solution triplets are (1,1, 4);
(L4, 1) 1,1);1,2,3);(1,3,2); 2,1,3); 2,3,1); 3, 1, 2);
(3,2, 1); (2,2,2); ten triplets. Here we have used only 1, 1,
2k — 2 and 1, 2, 2k — 3. The triplets 1, 3, 2k — 4 and 1, 4,
2k — 5 yield no new solutions.

Solve in integers ax + by = ¢ where a, b, and c are integers,
a<b,and1 < ¢c < b, witha and b relatively prime.

We solve the problem for selected values of ¢, a4, and b.

First we show that if x = xy and y = y, is a solution of
ax + by = ¢ where a and b are relatively prime, then the equa-
tions x = xg — brand y = yo + at (wheres = 0, &1, £2,...)
give all the solutions.

PROOF: (1) We have ax + by = cand axo + byy = c.

(2) Therefore, ax — axo + by — byg = 0,andso y — yo =
g(xo — X).

(3) Since y — yy is an integer, and since (a, b) = 1 (that is, the
greatest common divisor of a and b is 1), then b must divide
xo — x; thatis, xo — x = br where 1 is an integer.

(4) Therefore, x = xo — bt and y — yg = g-bt = at, and so
Yy =Yyo+at

The proof is completed by showing that if t+ = 1, then x, =
xo — bt; and y; = yo + at, are solutions.

(5) Substitute x; and y, into the left side of the equation ax +
by = ¢. We have ax; + by, = a(xo — b)) + b(yo + aty) =
axg + byy — abty, + abt, = axy + by,. Since axo + byy = ¢
(from step 1), ax; + by, = ¢, and so the pair (x;,y;) is a
solution.
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CASE1: 5x — 11y = 1 (Euclidean Algorithm)
Since Il =5-2+1land5=1-44+ 1, wehavel =5 —4-1
(from the second equation) and 1 = 5 — 4(11 — 5+ 2), (replac-
ing 1 by 11 — 5-2 from the first equation). Therefore, 1 =
5-9 — 11 - 4. Comparing this equation with the given equation
1 = 5x — 11y, we have x = 9 and y = 4 as a solution,
Hence, x =9+ lltandy =4+ 51, t =0, +1, +2,...,
comprise all the integer solutions of the given equation.

CASEI: 5x — 11y = 1 (Permutations)

Rearrange the sequence of integers 1 through 11 so that integer n
is associated withn + Swhenn + 5 < 1l,and withn + 5 — 11
when n + 5 > 11, as shown in the two rows below.

Upper Row (naturalorder) 1 234 5 6 78910 11
Lower Row (permutation) 6 789 1011123 4 5

Start with 5 (since @ = 5) in the upper row, go to 10 in the
lower row, then to 10 in the upper row, to 4 in the lower row, and
so forth, until you reach 1. You will obtain the sequence 5, 10,
4,9, 3,8, 2,7, 1, nine terms in all. Therefore, x = 9, and, from
the given equation, we find y = 4. The general solution is x =
9+ 1ltandy =4+ 54,t=0, 1, £2,....

CASEIl: 5x — lly =3
2x—3y=lLetx=3Xandy=3Y,s0 that 5X — 117 = 1.
From Case I we have X = 9 4 11rand Y = 4 4+ 5¢. Therefore,

x=27+4+33tandy =12 + 154, t = 0, =1, £2,....

CASEIIL: S5x — lly = 25

Rewrite the equation as 5x — 11(y + 2) = 3 and let x = 3X
and y + 2 = 3Y. Thus, 5X — 11Y = 1. From Case I we have
X =9+ 11t and Y = 4 4+ 5¢. Therefore, x = 27 + 33t and
y=3Y-2=104 154t =0, £1, &2,....

CASEIV: 13x — 9y =1

Rewrite the equation as 4x — 9(y — x) = 1.

Letx = Xandlety — x = Ysothat4X — 9Y = 1.

Since9 =4-2+ 1land4 =1-4,thenl = 4(—2) — 9(—1).
Therefore, X = —2 and Y = —1 is a solution. Therefore, the
general solutionis X = —2 4+ 9tand Y = —1 4 4¢. Therefore,
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the general solution to the given equation is x = —2 + 9¢ and
y=-=34+13,1t=0, x1,£2,....

CASE1IV: 13x — 9y = 1 (alternative solution)

UpperRow 1 2 3 4 5 6 7 8 9
LowerRow 5 6 7 8 9 1 2 3 4

The sequence is 4, 8, 3, 7, 2, 6, 1. Using the method shown in the
second solution of Case I, associate n» withn + 4 whenn + 4 <
9, and with n +~ 4 — 9 when n + 4 > 9. Since there are seven
terms in the sequence, x =7 4+ 9k, y = 10+ 13k, k = 0,
+1, £2,....

Reconcile the answers given here with those given under
the first solution for Case IV.

10 Functions: A Correspondence
Course

10-1 Let f be defined as f(3n) = n + f(3n — 3) when n is a positive
integer greater than 1, and f(3n) = 1 when n = 1. Find the value

of £(12).

Rewrite f as f(3n) — f(3n — 3) = n and use “telescopic”
addition.

f@n) — fGn—3)=n
f@Bn—3)— f(3n — 6)
/& - fG) =2
We thus obtain f(3n) — f3) =2+4+3+4:--+n, so that
JOm =14+243 4 +n=1n+1) since fG3) =1L
(See Appendix VIL.)
S SU2) = S 4) = 3 @) = 10

coMMENT: Note that fis a triangular number. (See Appendix VII.)

n—1
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Challenge Define f to be such that f{(3n) = n? + f(3n — 3). Find f(15).

10-2

10-3

10-4

10-5

Using the method shown in the solution above, obtain
Sf@n) = —n(n + 1)(2'1 + 1.
Therefore, f(15) = - (5)(6)(11) = 55.

COMMENT: Note that f is the sum of the first n square
integers. (See Appendix VII.)

If £ is such that f(x) = 1 — f(x — 1), express f(x + 1) in terms
of f(x — 1).

Since f(x) =1— f(x—1), f(x+ 1) =1— f(x).
Therefore, f(x+ 1) =1—[1 - f(x— D] = f(x—1).

Let f = ax + b, g = ¢cx + d, x a real number, a, b, c, d real
constants. (a) Find relations between the coefficients so that f(g) is
identically equal to x; that is, f(g) = x, and (b) show that, when

f(g) = x, f(g) implies g(f).

(@ f(@ =alcx+d)+b=acx+ad+ b=x
c.ac=1,ad + b =0,0rb = —ad.

M g(f) = clax + by + d = acx + bc + d.

Since ac = | and b = —ad,

acx +bct+d=x+4c(—ad)+d=x—d+d=x
Therefore, [f(g) = x] = g(f). (The symbol = is read “implies.””)

Iff(x) = —x"(x — 1), find f(x%) + fX)f(x + 1).

F&®) = =x*(x* = )" and f(x + 1) = —(x + D)"()"
Therefore, f(x%) + f(x)f(x+ 1) =

—x2(x2 — 1) — x"(x = )'[—(x + 1)"x"] = 0

The density d of a fly population varies directly as the population N,
and inversely as the volume V of usable free space. It is also de-
termined experimentally that the density for a maximum population
varies directly as V. Express N (maximum) in terms of V.

d= :—]x = k3 % where k,, ko, k3 are positive constants. There-
fore, N = % Since d(max) = k.V, N(max) = Zk‘ = kV?

k
where k = *-
k3
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10-6 Given the four elementary symmetric functions f; = Xy + X3 +

10-7

10-8

X3 + Xg, f2 = Xi1Xo + XgX3 + XzXg4 + X4X3, f3 = X;X9x3 +

1
X9X3Xy + X3X4X) + X4X1Xg, f4 = XyXgX3X4, express S = . +
1,1 1. '
- + - + %, In terms of £y, £, f3, fy.

g = XaXsXe F XaXeXs + XeX1Xz + XiXaXs IE]
X1X2X3X4 f4

Let f(n) = n(n + 1) where n is a natural number. Find the values
of m and n such that 4f(n) = f(m) where m is a natural number.

Assume 4f(n) = f(m), or 4n(n+ 1) = m(m + 1). Then
an>+a4n=m? +man’+4an+1=m?4+m+1,Q2n+1)2 =
m? + m + 1. But m2 + m + 1 cannot be the square of an inte-
ger. Therefore, there are no natural numbers m and n such that
4f(n) = f(m).

INTERPRETATION I: We may say that the product of two successive
natural numbers cannot be equal to four times the product of
some other pair of successive natural numbers.

INTERPRETATION II: Since

Af @) = fem) = (43 1) = 3 f(m)
= (4-%n(n + 1) = %m(m + 1)) s

and since %k(k + 1) represents the sum of the first k natural

numbers (see Appendix VII), we may say that the sum of a
given number of natural numbers starting with 1 can never equal
four times the sum of some other number of natural numbers
starting with 1. Try it!

Find the positive real values of x such that x*” = (x*)%.

Taking logarithms of both sides of the equality to some suitable
base, we have x*logx = xlogx® = x2logx. Therefore,
(x* — x%logx =0. When logx =0, x =1, and when
X —xt=0x=2.

COMMENT: The equation x* — x2 = 0 is also satisfied by x = 1,
a value we already have.
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1 1

109 If x =3 + 1 andy=3+—-l—-,ﬁnd the value of
3+; 3+—l
3 —_
Ix — yl. *y
. 1 . .
The equatlonx=3+3+lls equivalent to x = 3+3x§_1’
X

x % 0, and this equation, in turn, is equivalent to 3x2 4+ x =
9x + 3 4 x which, when simplified, becomes x2 — 3x — 1 = 0.
Similarly, the equation for y can be converted to the equivalent
equation y2 — 3y — 1 = 0. We may represent either of these
equations by t2 — 3t — 1 = 0, using the neutral letter 7. One

34+ V13
2

root of this equation is . Therefore, each of x and y is
the fraction expansion of this root so that |[x — y| = 0.

3+V/13 6413 -3
2 2

VERIFICATION: X = (replacing 3 by 6 — 3)

_ Vi3 -3 1 . . a1
=3+ —— = 3+ —— ( since fraction 55
V13 -3 a
-3 4 1 ( . 2 2 /1343
TP T B\ U 3T UB -3 VB +3
4 _ 213 4+ 3))
= 4
_ 1 1(.. 3+ \/1_3') Lo
=34+ TBF3 - 3+ o (smce x = 2 . Continuing in
2
. . 1 ..
this manner, we obtain x = 3 + — - In a similar manner, we
I+
X
1
developy = 3 + :
3+—
I+
y
Challenge Express 3%@ as an (infinite) continued fraction. See

Problem 10-10.

3AVE_ gt
2 34 ll

3+3+...

This is obtained by operating in the manner shown in the veri-
fication section above.
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2

10-10 Assuming that the infinite continued fraction 3

2+
2
2450

represents a finite value x, find x. (Technically, we say the infinite
continued fraction converges to the value x.)

242-x’x2 4+ 2x — 2 = 0,x = v/3 — 1. Wereject the value

x = —+/3 — 1, since the original fraction is not negative.

X =

Challenge 1 Assuming convergence, find

y=_2+ 2
_2+__—2
_2+_2+...

METHOD 1I: y——2+ ,y +2y—2=0,

y=—-v3i-—-1
METHOD II: y = —2 + 2 3 =
_2+______2_
—2+_2+...
—2—x=-2—-341=-=-/3-1

NOTE: x has the value stated in Problem 10-10.

10-11 Find lim F; that is, the limiting value of F as h becomes arbitrarily

h—0
close to zero where F = ~————>"= 3 + -3 ,h=0.
FoY3th=v3 \/‘3'+7,+\/3 h
h VIt h+3 h[\/3—+—+\/§]
! 1
= m.’rherefore, 'lll—l"I;l)F = TW_ — K/}_

10-12 Find the limiting value of F = 11 s
integer, as x assumes values arbztranly close to 1; that is, find
lim F.

x—1

X # 1, where a is a positive

x—1 x—Dxe 4 x24..- 4+ x4+ 1)
F= =
x—1 x -1
=x*T4 x4 x+ Lx# L
Therefore, im F=1414+---4+14+1=a.

z—1
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ILLUSTRATION: Let F = ’;3__11 I l)ix2_+1 sk VR
x + 1, x # 0. As x takes values arbitrarily close to 1, x2 4+ x + 1
approaches arbitrarily close to 3.
We invoke the help of a geometric picture, Fig. S10-12.

The graph of F is the parabola y = x% 4+ x + 1 with the point
common to x = 1 deleted. As we approach arbitrarily close to
x = 1 along the x-axis, we come arbitrarily close to y = 3 along
the y-axis.

=3 i deleted_]
y 43 :g’-} point

1 [T sione

- 2°
in terms of n; that is, the

10-13 If n is a real number, ﬁnd Izm —

n—

limiting value of pa— " as x approaches arbitrarily close to 2.

x\n
xr =2 (-2_) -1

X
Let F= =5 = 5_1)_1._' Leti 1+ A Then
2 2»—1
lim F = lim————--(l_*_h)"—l-2—"——1
292 h—0 h 1
1+ nk + %1—)112 +- ) 1

= 2""11im h (See Appendix VI.)

h—0
=2""11im (n 4 "(" 1) h+- ) =np-2""1

h—0

10-14 A function f is defined as

f= {1 whenx = 1,
T 2x — 1 4 f(x — 1) when x > 2, X an integer.
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Express f as the simplest possible polynomial.

Wehave f(2Q) =2:2—14+1=2%f(3) =2-3—-1+42%=
32, Let us guess f = x2, and try to prove the result by mathe-
matical induction.

(1) We havef(1) = 12 = I.

(2) Assume f(k) = 2k — 1 + f(k — 1) = k2.

@k + 1D +2k—1+fk—1=(k+1+k?.
S22+ D) - 14 Rk—14fk— DI = (k+ D
that is, 2(k + 1) — 1 + f(k) = (k + 1)

By definition, f(k + 1) = 2(k + 1) — 1 + f(k).
Therefore, f(k + 1) = (k + 1)2, and so the guess is valid.

11 Inequalities, More or Less
11-1 Let P = (}1 — l)(é - 1)(% - l) where a, b, ¢ are positive

numbers such that a + b 4+ ¢ = 1. Find the largest integer N
such that P > N.

P (= )(-)C-1)

Pk (rped)+Ceied -
Sincei+i+alb=b+azc+canda+b+c= 1,

R
Therefore,P=¢—1'+l—l,+§—— 1.
Sincea+b+c=1@+b+c)P=P=
@+b+o(G+5+;) — L

But (a+b+c)(%+%+%) > 32 (See Appendix IV.) There-
fore, P>9—1=8.




Inequalities, More or Less 153

11-2 Find the pair of least positive integers x and y such that 11x —
13y = landx + y > 50.

The general solution to llx — 13y =1is x =6+ 13¢, y =
5 + 11z (see Problem 9-11) with ¢ = 0, 1, +2,....

To satisfy the second condition, we have x + y = 6 + 137 +
54 11t =11+ 24¢. Sincex + y > 50, 11 + 24t > 50,¢ > 2.
Taking ¢ = 2, the least permissible value, we have x = 6 4
13-2=32andy=5+11-2=27.

11-3 Is the following set of inequalities consistent? (Consider three
inequalities at a time.)

x+y<3-x—-y20x2-1,~-y<2

The set of inequalities x + y <3, x> —1, —y < 2 (the
equivalent of y > —2), determines the triangular region PyP,P3.
(See Fig. S11-3.) The inequality —x — y > 0, or its equivalent,
x + y < 0, represents the set of points in the half-plane below
thelinex 4+ y = 0.

[

-1
PT

x+y=0 x+y=3

Py N

(0]

y=-2
Py Py Py
S11-3

The intersection of this half-plane and the triangular region
PP, P; is the triangular region P3P4Ps.

Since the two triangular regions are not coincident, the set of
inequalities is inconsistent.
COMMENT: The inequalities x + y < 3, x > —1, and —y < 2
are consistent, and theset —x — y > 0, x> —l,and —y < 2
is consistent.

11-4 Find the set of values for x such that x3 + 1 > x? + x.
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11-5

METHOD I: (Algebraic)
BH1>xT+0=2[(x+ DEZ2—x+1)> x(x+ 1)]

Therefore, when x + 1> 0, x2 — x + 1 > x.

But (x> — x4+ 1 > x) = [(x — 1) > 0]. Therefore, x = 1.
Since x + 1> 0, x > —1. Therefore, x® + 1 > x% + x for
x > —1, except for x = 1.

Stated otherwise, x> + 1> x4+ x when -1 < x< 1, or
when x > 1.

METHOD 11: (Geometric) In Fig. S11-4 are shown the cubic curve
y = x® 4+ 1 and the parabola y = x% + xfor —1 < x < 1.

Forx> 1, x3 41> x4+ x;
forx=1,x%4+1=x%+ x;

for —1 < x< 1, x*+1>x%+ x;
forx < —1, x>+ 1< x2+ x.

Y |
'\ 2
Y}
\ /
X (%) lL ¥
l S11-4

Consider a triangle whose sides a, b, ¢ have integral lengths such
that c < band b < a. If a + b + ¢ = 13 (inches), find all the
possible distinct combinations of a, b, and c.

Sincea+b+c=13, b+ c=13 —a. But b+ ¢ > a (the
sum of two sides of a non-degenerate triangle is greater than the
third side).
Therefore, 13 — a > a so that a < 6. Since b < a, b <6.
Therefore, ¢ > 1.

Also, ¢ < 3,forif ¢ > 4, thena + b < 9; and when a = b,
a and b each equals, at most, 4. But since b > c, this is a con-
tradiction.

When ¢ equals 3, a + b equals 10. Therefore, if a = b,
each equals 5, and if @ > b, thena = 6 and b = 4.
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It follows that the possible combinations are
a=6,b=6,c=1;
a=6b=35¢c=2;
a=6b=4,c=3;
a=5b=5 c=3.

In summary, then, 1 < ¢<3,4<b<£6,5<axh.

. . .. 1
11-6 A teen-age boy is now n times as old as his sister, where n > 35 .

11-7

In 3 years he will be n — 1 times as old as she will be then. If the
sister’s age, in years, is integral, find the present age of the boy.

Let s represent the sister’s age in years; then ns represents the

boy’s age in years.
nh—Ds+3N)=n+3;ns—s+3Im—3=n+43;
3n=6+s;n=2+§

Butn > 33,502 + %> 37 ; thatis, s > 4;.
Since the boy is a teen-ager, 13 < ns < 19. Substituting for n,

1352s+§519,and39gs2+6s557.

By adding 9 to each side of the inequalities, we have 48 <
(s + 3)2 < 66. Therefore, 6 < s +3 <8, and 3 <s<5.
Since s>4% and s< 5, s=35, and, since n = 2+§’
n= 3%-

Therefore, the present age of the boy, #s, is 18% years.

Express the maximum value of A in terms of n so that the following
inequality holds for any positive integer n.

1 1 1
xn+xn—2+xn—4+...+xn_‘+xn_z+;;2A

Since the sum of a positive number and its reciprocal is greater
1
than or equal to 2, x + | > 2 and x% 4+ % > 2. Therefore,
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x2+l+%23.Similarly,x3+L 2andx3+x+1+
L > 4. Similarly, x* + ; > 2 and x* +x +1+ 5>
5. Assume that x* 4+ x*~% 4 -+x,‘_,+ > k+l where
k is odd Smce x"+2+ H,>2 then x**2 4+ xF + x¥=% 4

-+x,‘_,+ +x,‘+,2k+l+2-—k+3 Therefore,
A=n+41.
coMMENT: The proof given makes use of Mathematical Induction.
(See Appendix VIIL.)

11-8 Find the set Ry = {x|x? + (x* — 1)? > |2x(x® — 1)|}, and the
set Ry = {x|x% + (x2 — 12 < |2x(x% = 1)|}.

Let f=xand g = x%2— 1. Since (f — g)? >0, f2+g*>
2fg.

SxP 4 EE-DE> 2x(x2-1)

Since x% + (x2 — 1)2 > 0, xZ + (x2 — 1)? > [2x(x% — 1)|.
Thus, R; is the set of real numbers, and R, is the empty set.

119 Show that F = 3-3-2... 22 7:_0__1
PROOF: [ﬁtG—g-g-g---%-
Since%<§,%<‘—;, ,kL_*_l<:—::__;,..,F<G.
SFP<FG=3-2.2.. 0. 00 Tcln’andF<ﬁ-
Challenge ShowthatP:%-i;.g...:%? %.
Since2<§,§<‘—5‘,...,F<P. B
But FP = 13-, P > oo + s and P> Yol

11-10 Which is larger v/9! or /10! ? Be careful!

METHOD 1: We prove that the positive geometric mean (see
Appendix IV) Gay1 = "V/(n + 1)! is greater than G, = VI,
and, hence, 710! > /9!,
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Since "Vn + 1 > "VUn, "Wnl(n + 1) > "Waln (mul-
tiplying by "\/n!); that is, "/ (n + D) > "Vnln.
Since n* > n! forn> 1, n > Vn!.
1 ntl
conin > ni(nye = () 7, and “Wnln > Vnl.
Thus "V F 1) > "Vnln > Val.

METHOD 1I: Raise both expressions to the 90th power.

(\'/9—!)90 é (W 90
o' < oy’
(OO < OH°(10)°
9 < 10°

This is obviously true, so we proceed to conclude that

V9! < Y101,

11-11 If x is positive, how large must x be so that /X2 4+ x — X shall
differ from % by less than 0.02?

vVx24+x—x-— % < € so we replace .02 by € and, hence,
solve a more general problem.

1
%—e<\/x2+x—x<§+e.

1
But vVx2 4+ x—x =

X
z = )
vVxi+x+x \/1+1+1
X

, 1 1 1-2 1 2
c - >s;—€e=———,and [l + 7+ 1< 75
14 +1

T 142 1 (4207
VIti<i—zs1+i<g—z9;
1 8e . (1—2e)2.
<=2 " *> s

For ¢ = .02, x > 5.76.

11-12 Find a rational approximation % to \/2 such that — 8—1n_ <
\/f—?<8—ln-wheren58.
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. 1 1 1 1 .
1Smce —8—71<\/§—%<871’ —§<n\/§—m<§. Since
= = .125, we list below, for n < 8, the approximate values (three

8
decimal places) of n/2 — m such that /2 — m < 1.
V2 —-1= 414 5v2 — 7=.170
22— 2= 828 6v2 — 8 = 484
V2 —4=.24 V2 - 9= .898
42— 5= 65 8v2 — 11 = 312
From the table we find — 1 < 5V2 - 1. Therefore,

1 7
—§3< V2 - < 8—5 so that the requnred is -

QUERY: Can you show that the answer is umque?

11-13 Find the least value of (a, + ap + a3z + a.;)(al1 + aiz + ala + -al‘
where each a;, 1 = 1, 2, 3, 4, is positive.

We prove more generally that
1
@+a+ - ta) s+t +2)2n?

where each a;, i = 1,2, ..., n, is positive so that the answer to
the given problem is 42 = 16.

By definition, the harmonic mean (H.M., see Appendix IV)
a'+a '+ -+ a.—l)—l
n

of positive numbers is HM. = (

n

. Since the HM. < A.M. (arithmetic mean;

l-i-—1-+ +__

ax asz An

SceAppendlxIV),then . n 1 Sm+a":"'+“".
wtat

Therefore, (a1 + az + = +an) (3- + 3o + - +5-) 2 n®
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12 Number Theory: Divide and Conquer

12-1 Let N, = .888 ..., written in base 9, and let N, = .888...,
written in base 10. Find the value of Ny — Ny in base 9.

8 8 8 8 8
METHODI:N1=§+§+...-_- 1’N2=E+W+”'=§'
SNy — Ny = éwhich is .1 in base 9.

METHOD 11; Since N, = .888... in base 10, then 10N, =
8.888....

By subtraction, 9¥; = 8 so that N, = g .

Similarly, since N; = .888...in base 9, 9N, = 8.888. ..,
and, again by subtraction, 8N; = 8 so that ¥, = 1
1

Nl —N2 = §'

12-2 Solve x2 — 2x + 2 = 0 (mod 5).

Since x2 — 2x 4+ 2 =0 (mod 5), x> — 2x + 1 = —1 (mod 5).
We may now replace —1 by 4 — 5 and, then, reduce the co-
efficients by multiples of 5. We have x2 —2x +1=4—35
(mod 5), x2 — 2x 4+ 1 =4 — 0 (mod 5), and, so, x% — 2x +
1 =4 (mod 5). Therefore, x — 1 =2 (mod 5) or x — 1= —2

(mod 5).
From x — 1 =2 (mod 5) we obtain x =3 (mod 5); that is,
x =3 4 5k.

From x — 1 = —2 (mod 5) we obtain x = —1 (mod 5). This may
be modified to x=4 — 5 (mod 5) and, consequently, x = 4
(mod 5); that is, x = 4 + 5k.

In either expression for x, k may have the values 0, =1,
+2,....

12-3 Find the positive digit divisors, other than 1, of N = 664,512
written in base 9.

As a general principle, it can be said that N = aox™ + a;x* ! +
c+~+4+a,_1x + a, isdivisible by x — 1 ifag +a; + -+ + a,
is divisible by x — 1, (see proof below), where x, a positive
integer, represents the base designated.
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12-4

12-5

Since 6 + 6+ 4454142 =24 = 8-3, N is divisible by
8 and, hence, also by 2 and by 4.

PROOF: N = aol(x — )+ 1" + ay[(x — )+ 11"71 4 - -
+ an—l[(x - ]) + 1] + an

We may write agl(x — 1) 4+ 1]* = agdo(x — 1) 4 aq

where A4, is a polynomial in x of degree n — 1.

Similarly, a;[(x — 1) 4+ 11"~! = a;4,(x — 1) + a, where 4,
is a polynomial in x of degree n — 2. And so forth until we reach
Anol(x — 1)+ 112 = an_odn_o(x ~ 1) + a,_»

with 4,_, of degree 1. Finally, we have

apalx—D+11=a,_;(x— 1)+ an_;.

N, therefore, is the sum of a multiple of (x — 1)

andag + ay + - - - + a,—1 + a,. If, then,

ao+a+ -+ an_1 + a, is divisible by x — 1,

then so is N.

NOTE: There may be other digit divisors in special cases. For
example, M = 664,422 in base 9 has an additional divisor of 5.
Show that an additional divisor of 5 occurs whenever the base 9
number is divisible by 11 in base 9. (See Appendix V.)

Find all the positive integral values of n for which n* + 4 is a
prime number.

ntt+a4=nt+4n2+4—4n = m>+22+2)(n>—2m+2)
Forn = 1,n* 4+ 4 = 5-1, a prime.

For n > 1, n® 4+ 4 is composite since it has the two factors
n% 4 2n + 2 and n? — 2n + 2, each greater than 1.

Hence, n* + 4 is prime only forn = 1.

Let B, = x* — 1 and let B, = x® — 1 with a, b positive integers.
If By, = x¥ — 1 is the binomial of highest degree dividing each of
B, and By, how is y related to a and b?

Obviously, y divides both @ and b because if @ = ya, and a, is
an integer, then x* — 1 = x¥%1 — 1 = (a¥)» — 1, which is
divisible by x¥ — 1. A similar argument follows for b = yb,.
Thus, the maximum value of y is the greatest common factor of
aand b, or y = (a, b).
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ILLUSTRATION: Leta = 9and b = 6. Then y = (9, 6) = 3.
VERIFICATION: B, = x® — 1 = (x3)3 —~ 1

=3t +x¥+1)
x6—1=@xH2-1
3 - l)(x3 +1)
B, and B, are each divisible by B, = x3 — 1.

B,

o

If fx)=x*+3x3+9%24+12x+4+20, and g(x) = x*+
3x3 4 4x2 — 3x — 5, find the functions a(x), b(x) of smallest
degree such that a(x)f(x) 4+ b(x)gx) = 0.

Since f(x) = x* + 3x3 4+ 9x% + 12x 4+ 20
= x* + 3x3 + 5x% + 4x% 4 12x 4 20
= x’(x* + 3x + 5) + 4(x* + 3x + 5),

and since g(x) = x* + 3x3 + 4xZ2 —3x— 5

=x*4+3x3+5x2 - (x24+3x+5)

= x*(x* +3x + 5) — (x> + 3x + ),
fx) = (x2 + $(x2 + 3x + 95),
and g(x) = (x2 — 1)(x? + 3x + 5).
Sb(x) = x2 4 4,anda(x) = —(x2 — 1) = 1 — x2;
or b(x) = —(x% 4 4),and a(x) = x? — 1,
since (1 — x%)(x% 4+ (x> + 3x + 5)

+ (x> + H(x* — D(x? +3x + 5) = 0,
and (x2 — D(x2 4+ H(xZ+3x+ 5)
— 2+ HxE - DI+ 3x+5)=0.

COMMENT 1: Obviously, if f(x) and g(x) are relatively prime,
then a(x) = —g(x) and b(x) = f(x), or a(x) = g(x) and
b(x) = —f(x).
COMMENT 2: In general, if f(x) = Di(x)@(x) and g(x) =
Dy(x)Q(x), then a(x) = Dy(x) and b(x) = —D;(x), or the
respective negatives.

Find the smallest positive integral value of k such that kt + 1
is a triangular number when t is a triangular number. (See
Appendix VIL)

Since a triangular number ¢ is of the form %n(n + 1) where n
is a natural number, and since we require that kt; + 1 = ¢,
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12-8

12-9

we have k[% r(r + 1)] +1= %s(s + 1). Therefore, kr? +

kr+2=s5(+1)=(4+ 1)(4 + 2) where s is replaced by
A + 1. Therefore, kr?+ kr+2 = A2+ 34+ 2 so that

kr? = A% and kr = 3A. Therefore, r = -'; =1 ; L

Since the smallest value of k is required, choose » = 1. Then
s=4and k= 9.

ILLUSTRATION: Let ¢ = %(5)(6) = 15; then 9r+ 1 = 136 =
2a617).

VERIFICATION: Since m = 3n + 1, we have k- %n(n + 1=
1G4+ DG+ = SO+ I+ =9 Jn+ D+ 1.
Thus, k = 9.

Express the decimal .3 in base 7.

Wehave%=%+%+‘;—:+-“whereal,a2,a3, ...areto
be determined. To find a;, multiply through by 7, thus obtaining
o T =2tg=a+5+5 4, sothata =2

To find a4, multiply through again by 7, thus obtaining
1-7_7 _ I_ a4 ... =
W_10_0+10_a2+7+ , 80 that a, = 0.

Continuing in this manner, we have

7-7 49 9 as =
0 " 1o-4tig=9+5+ -, sothatas = 4,
9.7 63 3 as _
] _10—6+10—a4+7+ , 80 that a4 = 6.

Thereafter, the digits repeat in cycles of 2046.
Therefore, .3 (base 10) = .20462046 . . . (base 7).

The following excerpt comes from Lewis Carroll's Alice’s Ad-
ventures in Wonderland.

“Let me see: four times five is twelve, and four times six is
thirteen, and four times seven is—oh dear! I shall never get to
twenty at that rate!”

Do you agree or disagree with the author?
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Here is one interpretation of the excerpt:

4 X 5 (base 10) = 12 (base 18), 4 X 6 (base 10) = 13 (base 21),
4 X 7 (base 10) = 14 (base 24), . . ., 4 X 12 (base 10) = 19
(base 39)

where the successive bases are in arithmetic progression. The
next term, if we continue in this vein, should be 4 X 13 (base
10) = 20 (base 42). However, 20 (base 42) = 84, not 52.

If we write 4 X 13 = lu (base 42), and allow u = 10, we
can satisfy the requirement, but if u is limited to the set
{0,1,2,...,9}, we cannot satisfy the requirement.

Show that, if a2 + b% = c2, a, b, ¢ integers, then P = abc is
divisible by 60 = 3-4-5.

Let a = m?2 — n% b = 2mn, ¢ = m? + n? Then
P = 2mn(m — n)(m + n)(m? + n?).

CASE I: If either m or n is even, then 4 P, where 4 P means that 4
divides P exactly. If both m, n are odd, then m — n is even and,
therefore, 4|P.

cask 11: If either m or n is of the form 3k, then 3|P.

Ifm =3k 4+ land n = 3L 4 1, then m — n = 3r so that 3|P.
Ifm=3k+ landn = 3L — 1, then m + n = 3s so that 3|P.
Similarly for other combinations.

case 1i: If either m or n is of the form 5k, then 5|P.
Ifm=5k+ 1landn = 5L + 1, then m — n = 5r so that 5|P.
If m = 5k + 1and n = 5L + 2, then m% 4 n? = 5t so that 5|P.
For other combinations, proceed in similar fashion.

These cases are independent and, hence, the results may be
superimposed so that P is divisible by 3, by 4, and by 5, and,
hence, by 3-4-5 = 60. For primes beyond 5, the reasoning
fails. Therefore, the largest integer divisor is 60. Alternatively,
since the greatest common factor of 3-4-5 and 5-12-13 is
60, the largest integer divisor is 60.

12-11 Find the integer values of x between —10 and +15 such that

P = 3x3 4 7x?% is the square of an integer.
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Since P = 3x3 4+ 7x% = x?(3x + 7) = N?, either x = 0, or
3x + 7 is the square of an integer. We therefore set 3x + 7 =
K% = 3(x + 2) + 1. Since the right side of this last equality
leaves a remainder of 1 when divided by 3, the same holds for k2.
Therefore, K% = 3m -+ 1 and, in consequence, K = 3m =+ 1.

Put another way, since 3x + 7 =1 (mod 3), K% = 1 (mod 3).
Form=0, K= +1 and x = —-2.

Form=1, K=2o0r 4and x= —1 or 3.

Form=2, K=50r7 and x = 6 or 14,

Therefore, the required set is {—2, —1,0, 3, 6, 14}.

12-12 Find the geometric mean of the positive divisors of the natural
number n. (See Appendix IV.)
Let the divisors of n be do(= 1),d,,ds, . . . ,dr_1, dr, (= n) where
di_1 = di, ydp_o = diz , and so forth. Therefore, when k is even,
GM. = Ydod; -+ drrdy = Vn-n-n(k/2 factors), since

n=dyd=dids_y = . When k is odd there will be ~5~

]
factors n and one factor v/n. In either case, we have k \/n‘*_‘ =
1

n? = \/n.

ILLUSTRATION 1: Find the G.M. of the positive divisors of 72.

GM.=V1:2:3:-4-6-8-9-12-18-24-36-72
= Y728 = VT3

ILLUSTRATION 2: Find the G.M. of the positive divisors of 16.
GM. =V1-2-4-8-16 = V1624 = V45 = 4 = /16

12-13 Show that if P=1-2-3-...)onand S=14+2+3 4 ---
+ n, n a natural number, then S exactly divides P if n is odd.

PROOF: If n is odd we may represent it as 2k + 1. Then
1-2:3....2k+1) _ 2k + 1)!

(k4 :

= @+ DG+ D (See Appendix VIL.)

But both (2k + 1) and (k + 1) are factors of (2k + 1)!. There-
fore, S divides P.

P _
=
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!
If n is even we may represent it as 2k. Then CA ¢ )| S

$ lapek+
which may or may not be an integer since 2k + 1 is not neces-
sarily a factor of (2k)!.
ILLUSTRATION 1: Let n = 21.
Then P = 21! and S = %(21)(22) = 11-21.
Since 21! contains each of the factors 11 and 21, S divides P.
ILLUSTRATION 2: Letn = 8. ThenP = 8!and S = %(8)(9) =
and 8! is divisible by 36.

ILLUSTRATION 3: Let n = 6. Then P = 6! and S = 21, and 6! is
not divisible by 21.

12-14 By shifting the initial digit 6 of the positive integer N to the end,
we obtain a number equal to %N. Find the smallest possible value
of N that satisfies the conditions.

Let the digit representation of N be 6asa; . . . a, so that asas . . .
1 . . . .
a6 = 3 (6azas . ..a,). When each side of this equation is

multiplied by 4, the terminal digit on the right is a, while the
terminal digit on the left is 4. Thus, a, = 4. Then, the digit
preceding 6, on the left side, is 8 since 4 X 4 + 2 = 18, so that
the corresponding digit on the right @,,__; = 8. Continuing in this
manner, we have 4 X 8 + 1 = 33 so that @, = 3,4 X 3 +
3=15sothata,_3=5,4X5+1=21sothat a,_4 =1,
and, finally, 4 X 14+ 2 =6 so that a,_5 = 6. Therefore,
N = 615,384.

VERIFICATION: %(615,384) = 153,846

Of course larger values of N are obtainable by repeating the basic
block of integers which, in this case, are 6, 1, 5, 3, 8, 4. Thus, for
example, we have

N, = 615,384,615,384 or N; = 615,384,615,384,615,384,
and so forth, each satisfying the conditions of the problem, since,
for example, (615 384) = 153 846 and - (615 384,000,000) =
153,846, 000000 and, hence, - (615 384000000) + < 1 (615 384) =
153,846,000,000 + 153,846, that is,

153,846,153,846 = %(615,384,615,384).
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12-15

12-16

12-17

Show that the general form for N is 615,384(10™ 4 108(m—1
4+ -+ 108+ 1), wherem =0,1,2,3..

Find the two-digit number N (base 10) such that when it is divided
by 4 the remainder is zero, and such that all of its positive integral
powers end in the same two digits as the number.

Set N = 10a + b. Since 10a + b = 4m, b is even. The only two
even digits whose square has the same terminating digit as the
digit itself are 0 and 6. Hence. b = 0 or 6.

The case b = 0 leads to a = 0 so that N = 00, a trivial case,
for, if a > 0, N will terminate in O while its square will terminate
in 0C.

N=10a+6=4m5a+ 3 =2m;.".a=1,3,5,7, or9.
But N2 = (10a + 6)% = 100a2 + 120a + 36 = 100a> + 100d +
10e 4 36, where we set 120a = 100d 4 10Qe. Since the last two
digits of N2 are the same as those of N, 10e + 36 = 10a + 6,
a = e+ 3sothata > 3. Also, 120a = 100d + 10(a — 3),
lla=10d — 3, lla< 87,a< 1.

Try a = 3, 362 = 1296 (reject). Try a = 5, 56% = 3136 (reject).
Trya = 7,76 = 5776 (accept). .. N = 76.

Find a base b such that the number 321y, (written in base b) is the
square of an integer written in base 10.

Since 3b% +2b 4 1 = N2, p = 2 EVA—H UV (g,

ratic formula). Since b > 4 and integral (Why?), the expression
—2 4+ +/12N2 — 8 > 6k withk = 4,5, .... The values k = 4
and k = 5 yield non-integral values for N. For k = 6, —2 +
V/12N2 — 8 = 36 and N2 = 121.

VERIFICATION: 321 = 121;4 = 112

(@a—-b)}c —d) o)b

If(b—c)(d—a)__ ’ﬁd(a—b)(c——d)
(a — b)c — —cd—a) _ 1
Let(b—c)(d—a)'—f’th —b)(c—d)“f
(b—c)(d—a)_ _1 (a—b)c —d)—(b—c)Xd— a)

andl—(a—b)(c—d) 1 2 (@ — b)c — d)

ac — bc —ad + bd — bd + ab + cd — ac
- (@ — b)c — d)

(@a—c)b—-d

1 3 8
T S A A
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12-18 Solve x(x + 1)(x + 2)(x + 3) + 1 = y? for integer values of
xandy.

Let P = x(x + 1)(x + 2)(x + 3). Since the product of four
consecutive integers is divisible by 24, we may write P = 24m
wherem = 0,1,2,....Since P + 1 = 24m + 1 is the square of
an integer for selected values of m, we set

x(x+ Dx+2)(x+3)+ 1
=xt4+6x3+1Ux2+6x+1=(x%+ax+ 1%

By comparing the coefficients of like powers of x on both sides of
this identity, we find a = 3.

Therefore, y2 = (x2 4+ 3x + 1)2so that y = x2 4+ 3x + 1
or y = —(x2 + 3x + 1), and, hence, there are infinitely many
solutions in integers since we may assign to x any arbitrary
integer value.

12-19 Factor x* — 6x® + 9x2 + 100 into quadratic factors with integral
coefficients.

METHOD I: Let P = x* — 6x® 4+ 9x2 4+ 100 = x%(x2 — 6x + 9) +
100 = x%(x — 3)2 + 100. If x2 + ax + b is a factor of P, then
a value of x such that x2 4 ax + b = 0 will also make P = 0.
(See Appendix II.) Setting xZ(x — 3)2 4 100 = 0, we have
x(x — 3) = 10i or —10i where i = v/ —1.

By subtracting 10/ from both sides of x(x — 3) = 10/, we
have xZ — 3x — 10i = 0, and by adding 10i to both sides of
x(x — 3) = —10i, we have x2 — 3x + 10i = 0.

Using the quadratic formula on each of these quadratic
equations, we find x = —1+4+2i, or x=4+42i, or x =
—1—2i,orx=4—2i
So,P =[x — (—1+4+2)][x — (—1 — 2i)]

X [x — (4 + 2D)][x — (4 — 20)]
=[x+ 1) — 2]((x + 1) + 2i]

X [(x — 4 — 2il[(x — 4 + 2i]
= (x% 4 2x + 5)(x? — 8x + 20).

METHOD 11: x* — 6x3 + 9x2 + 100
= (x> + ax + b)(x* + cx + d)
=x*+ @+ o)x®+ (b + ac + d)x? + (bc + ad)x + bd

Cbd=100=5-20=10-10=25-4=50-2=100"1
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Try b = 5, d = 20; then ac = —16. Since, also, a + ¢ = —6,
a=2and ¢c= —8 or a= —8 and ¢ = 2. The factors are,
therefore,

(x% 4+ 2x + 5)(x% — 8x + 20).

12-20 Express (a% + b2)(c? + d®) as the sum of the squares of two
binomials in four ways.
(a2 + b2)(c2 + d2) = (12(_‘2 + a2d2 + b2(_‘2 + b2d2
= aZ%? + 2abcd + b%d? + a%d?
— 2abcd + b%c?
= (ac + bd)? + (ad — bc)?
NOTE: The other three forms are obtained in a similar manner.
They are (ac — bd)? + (ad + bc)?, (ac + bd)? + (bc — ad)?,
and (bd — ac)? + (bc + ad)>.

12.21 Observe that 1234 is not divisible by 11, but a rearrangement
(permutation) of the digits such as 1243 is divisible by 11. Find
the total number of permutations that are divisible by 11.

Since divisibility by 11 requires that the difference between the
sum of the odd-numbered digits and the sum of the even-numbered
digits be divisible by 11 (see Appendix V), all permutations with
1 and 4 as either the odd-numbered digits or the even-numbered
digits, are divisible by 1.

The number of such permutations is 8, namely, 1243, 1342,
4213, 4312, 2134, 3124, 2431, 3421.

12-22 Find all integers N with initial (leftmost) digit 6 with the property

that, when the initial digit is deleted, the resulting number is %6
of the original number N.

Let N have k + 1 digits. . .N = 610 4+ y, where y has k
digits.

. k 6‘10* k—1 .

.. 6-10 +y=16y,y=T=4-lO , with k > 1.
For k=1 y =4, N = 64

For k = 2, y = 40, N = 640, and so forth.

.N =640...0 with n zeros, where n = 0,1,2,....

12-23 Find the largest positive integer that exactly divides N = 11%2 4
122+ where k = 0,1,2,....



Number Theory: Divide and Conquer 169

By adding zero to the right side in the form of 11¥ - 12 — 11%- 12,
we have N = 11%- 112 + 11%- 12 — 11%- 12 4 (123 - 12.
N = 115112 + 12) + 12(144* — 11%)
N = 115112 4+ 12) + 12(12% — 11)(144* 7 -+ - 4 1157}
N = 115(133) 4+ 12(133)(144% = 4 - - - 4+ 1157}
Since 133 appears in each term on the right, N is exactly divisible
by 133 = 112 4 12 = 122 — 11.
Challenge 1 Find the largest positive integer exactly dividing N =
7%t2 + 8%F1 where k = 0,1,2,....
Follow the solution shown above.
ANSWER: 57 = 72+ 8 = 82 — 7
Challenge 2 Show in general terms that N = A% 4 (A + 1)2<t+},
where k = 0,1, 2, ..., is divisible by (A + 1)2 — A.
By adding zero to the right in the form of (4*(4 + 1) —
A¥(4 + 1)), we have

N=A A2+ A4+ 1) — A4+ 1)
+ (4 + DI + ).
=AU+ A+ D+ A+ DA+ DD — 44
=AU+ A4+ D+ A+
X [(4 + D? — A4 + D10 4 4571
=A@ A+ D+ A+ DA +24 41— 4)
X (A4 + D+ 4 451
Therefore, N is divisible by A2+ A+ 1= (4 + 1) — 4
since the factor 42 4+ A4 + 1 appears in each term.

12-24 For which positive integral values of x, if any, is the equation
x® =9k + 1, wherek = 0, 1,2, ..., not satisfied?

Since we are seeking multiples of 9 (increased by one), we con-
sider those values of x that leave remainders of 0, 1, or 2 when
divided by 3, since the second and higher powers of 3 are multiples
of 9.

If x=3a+1,a=012,..., then x® = 3a + 1)8. Of
the seven terms in the expansion of (3a + 1), each of the first
six is divisible by 9, and the last term is 1. Therefore, x® =
(3a + 1)® may be written as 9k + 1.

Ifx=3a+2a=0,12,..., we may write x = 3b — 1,
b=1,23,... where b =a+ 1. Then xé = (35 — 1)S. Of
the seven terms in the expansion of (3b — 1)8, each of the first
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six is divisible by 9, and the last term is 1. Therefore, x% =
(3b — 1)® may be written as 9k + 1.

If, however, x = 3a, a=0,1,2,..., then x%® = (3a)%,
which, when divided by 9, leaves a remainder of 0.

Therefore, all those values of x such that x = 3a where
a=0,1,2,..., fail to satisfy the given equation, and all those
values of x such that x = 3a do satisfy the given equation.

12-25 If n, A, B, and C are positive integers, and A® — B* — C" is
divisible by BC, express A in terms of B and C (free of n).

Using Mathematical Induction (see Appendix VII), we note that
forn=1 A— B— C = k;BCso that 4 = B+ C + k;BC
where k, is an integer constant. Assume that, for n = k, 4* =
B* + C* 4 kyBC where k, is an integer constant. Then, for
n=k+1,

A+ = (B* + C* + koBC)(B + C + k,BC)
— Bk+l + Ck+1 + (Bck+ BkC+k1.Bk+1C
+ kyBC*tY 4 koB3C + koBC? + kikyB2CY).

We may write

BC* 4+ B*C + k\B**'C + k,BC**! + koB%C
+ szCz + k1k2.82C2 = k3BC.

_-.Ak+l — Bk+1 + Ck+1 + kgBC

Hence, BC divides 4¥T! — B¥+1 _ C*¥+1 5o that the theorem
1s true for all natural numbers n.

A = B + C + mBC where m is an integer constant.
12-26 Prove that if ad = bc, then P = ax® + bx® +cx +d, a= 0
is divisible by x2 + h? where h% = s =

P—a(x+ x4 & x+) Q="
(D) 2
P=a[x(x+5)+2(+5)]

Pea (e 2ot D). it 2o (Do)
that x2 + h? divides P exactly.
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COMMENT: We have proved, in addition, that, if ad = bc, then
- gis a root of ax® + bx? + cx + d = 0, a % 0. Hence, also,

d.
- z 1S a root.

ILLUSTRATION: P = 2x3 4 4x% 4 3x + 6 is divisible by xZ + :—; s
and the real root of P = 0 is —2.

12-27 Let R be the sum of the reciprocals of all positive factors, used
once, of N, including 1 and N, where N = 2°P~1(2° — 1) with
2P — 1 a prime number. Find the value of R.

The factors are 1, 2, 22,..., 2P~1 27 — 1, 22° - 1),...,
27=1(27 — 1);

11 1 1 1
R=itatzt "+t
1.1 1 1
X(I+§+2_2+"'+F
2 -1 1 22-1 20—1 1
=% tTu-1 1 = 1 (1+2»—1)
-1
= 2 o1

=2,

where we use the formula for the sum of the terms of a geometric
series. (See Appendix VII.)

12-28 Note that 180 = 32-20 = 32-22-5 can be written as the sum of
two squares of integers, namely, 36 + 144 = 62 + 122, but that
54 =3%2.6 =3%2.2:3 cannot be so expressed. If a, b are
integers, find the nature of the factor b such that a® - b is the sum
of two squares of integers.

Leta?h = N? + M2
CASET: N and M even integers so that N = 2K and M = 2L.
Then a%h = 4(K% + L?) = 4rwherer =0, 1,2,....

CasEll: N even and M odd so that N = 2Kand M = 2L + 1.
Thena®h = 4K+ L2+ L)+ 1 = 4r + 1.

CASEIII: N and M both odd so that N =2K+ 1 and M =
2L + 1.

Thena = 4K2+ K+ L2+ L)+ 2 =4r+ 2.
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Therefore, when a2b is divided by 4, the remainders are 0 or 1
or 2.

In terms of its prime factors we may write a uniquely as
a = 2°-3°2.5% __ (where the exponents e,, €5, €3, . . . represent
the number of times 2, 3, 5, . . . appear as factors in g, respectively).
Therefore, @ = 22¢1-322. 5§23 5o that, when @2 is divided
by 4, the only possible remainders are 0 or 1 (since the even
powers of odd numbers leave a remainder of 1 when divided by
4, and the even powers of even numbers leave a remainder of 0
when divided by 4).

Since a®b does not leave a remainder of 3 when divided by 4
(shown above), then b does not leave a remainder of 3 when
divided by 4; that is, b > 4n + 3, where n =0, 1, 2,..., in
order for a®b to represent the sum of two squares of integers.

12-29 Show that b — 1 divides b®~2 + b*™3 + --- + b + 1, and thus
show that b2 — 2b + 1 divides b*~! — 1.

PROOFI: Let N = b*~2 4+ b*~3 + .- 4+ b + 1, and interpret
N as a number in base b with b — 1 digits, each a 1. Thus, N is
divisible by » — 1 since a number in base b is divisible by b — 1
if the sum of its digits is divisible by & — 1. (See Problem 12-3.)
Sinceb ' —1=0G-D@2+b34+ - +b+1)=
(b — 1) N, and N is divisible by b — 1, then b*~! — 1 is divisible
by (b — 1)2 = b2 — 2b + 1.
PROOF I1: Let
S=b"24+b"3+---+b+1
=[@2-D+ 1]+ [ -D+ 1]+
+[6— D+ 11+1
=@ 2-D+E*-D+---+ OG-+
1+14+---4+1
b—1

=W Z-D+P3-D+---+G-D+G-D

Since each term on the right is divisible by b — 1, S'is divisible
by b — 1. The proof concludes following the reasoning given in
the second paragraph of Proof I.
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13 Maxima and Minima:
Ups and Downs

13-1 The perimeter of a sector of a circle is 12 (units). Find the radius

13-2

13-3

5o that the area of the sector is a maximum.

Let K represent the area of the sector. Then K = Ers where r is
the radius and s is the arc-length. Since r+r + s = 12,
s=12-2r, so K= %r(lz — 2r) = 6r — r2. Therefore,
K=9— 09— 6r+r%=9— (3~ r)?(completingthesquare
and factoring). K is maximum when r = 3 (units), since K equals
9 when (3 — )2 = 0, or less when 3 — r)% = 0.

The seating capacity of an auditorium is 600. For a certain per-
formance, with the auditorium nor filled to capacity, the receipts
were $330.00. Admission prices were 15¢ for adults and 25¢ for
children. If a represents the number of adults at the performance,
Jfind the minimum value of a satisfying the given conditions.

Let ¢ represent the number of children. Then a + ¢ < 600,
1 1
and za-l-zc < 150. @

We know that %a + ic = 330. an

Subtracting I from II, we find that 3a > 180 and a > 360.

Therefore, the minimum value for a is 361.

When the admission price to a ball game is 50 cents, 10,000 persons
attend. For every increase of 5 cents in the admission price, 100
Sewer (than the 10,000) attend. Find the admission price that
yields the largest income,

Represent the admission price yielding the largest income by
50 + 5n. Then the income, in dollars, becomes

50+ 5n

I= ) (10,000 — 200r).
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= 5000 + 400n — 10n%Z = 10[900 — (20 — n)?] so that
I (maximum) occurs when n = 20. The required admission
price is 50 + 5 - 20 = 150 (cents), or $1.50.

Challenge 3 Find the admission price yielding the largest income if, in

13-4

13-5

addition to the conditions stated in the original problem,
there is an additional expense of one dollar for every 100
persons in attendance.

50+5n

I= ) (10,000 — 200n) — (10,000 — 200n). The
answer is 50 + 150 = 200 (cents), or $2.00.

A rectangle is inscribed in an isosceles triangle with base 2b (inches)
and height h (inches), with one side of the rectangle Iying in the
base of the triangle. Let T (square inches) be the area of the triangle,
and Ry, the area of the largest rectangle so inscribed. Find the
ratio Ry T.

Designate the base of the rectangle as 2x and the altitude as y.

From similar triangles we have the proportion i =4 ; % so that
x = %(h — »). Since R = 2xy, we have
b 2b
R=2-3(h—y) =75y -y M

Adding to the right side of equation I zero in the form
2b h? 2 h? bh
7 (5) 5. we et R‘—(-Z+’W—y2)+3
b 2b
Therefore, R = (y 2)

=~

R,,, the maxlmum value of R, is bzh , obtained when y = 3
Since T = (2b)(h) = bh, the ratio R,,:T = 1:2.

N

It can be proved that the function f(y) = ay — y® where b > 1,
1
a> 0,andy > 0, takes its largest value wheny = (%)5'-_1. Use

this theorem to find the maximum value of the function F =
sin X sin 2X.

F = sin x sin 2x = sin x(2sin xcos x). For sin®x we sub-
stitute 1 — cos® x and obtain F = 2(cos x — cos® x). By letting
y = cos x, we convert Finto F = 2(y — y3).
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To maximize the function y — y3, we note, by comparing it
to f(»), that a = 1 and b = 3. Hence, y — y3 will take its

1

largest value when y = <%)3—1 = \-/1—3 Therefore, F(max) =
2(5- (@A) =

13-6 In the woods 12 miles north of a point B on an east-west road, a
house is located at point A. A power line is to be built to A from a
station at E on the road, 5 miles east of B. The line is to be built
either directly from E to A or along the road to a point P (between
E and B), and then through the woods from P to A, whichever is
cheaper. If it costs twice as much per mile building through the
woods as it does building along the highway, find the location of
point P with respect to point B for the cheapest construction.

Represent the cost function by C, and the distance from B to P
by x. Then C = 5 — x 4+ 24/144 4 x2. With the aid of a table
of square roots, graph the given function for 0 < x < 5. Mini-
mum C occurs when x = 5, so that P is at E, that is, 5 miles
east of B.

13-7 From a rectangular cardboard 12 by 14, an isosceles trapezoid and
a square, of side length s, are removed so that their combined area
is a maximum. Find the value of s.

Let A represent the combined area. (See Fig. S13-7.) Then, since
A = 3h(by + by) + s* where h s the altitude of the trapezoid
and b; and b, are its bases, and s is the side of the square,
= 2012 — 914+ 5) + 52 = 35 — 5 + 84,
In order to determine the maximum value of A more readily,
werewriteitasA 2(s — 25+ 1)+ 8 — > = (s - 12+

83 . Obviously, A4 is a maximum when s is a maximum, that is,

12 s

14 $13-7
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when s = 12. For this value of s, the area of the square is 144
and the area of the trapezoid is zero.

COMMENT: Note that the minimum value of the area is 83%’

occurring when s = 1, but that the combined area is 84 when
s=0.

13-8 Two equilateral triangles are to be constructed from a line segment

139

of length L. Determine their perimeters P, and Py so that (a) the
combined area is a maximum (b) the combined area is a minimum.

If we represent the perimeter of one triangle by P,, the perimeter
of the second triangle is represented by L — P;. Therefore, the

2 — 2
combined area 4 = % (%) V3 + ‘—l‘ (L 3 P') /3 (using the
formula %s2 \/3 for the area of an equilateral triangle). Hence,

A =L @2+ 12— 2UP + PD) = L 22 - LP) + L7]
2 2
Addmg to the right side zero in the form of 2- L— — L2 , We

obtain

a=3l(r -9 + 2 -5]= G [a(r -9 +5]
Since the least value for (Pl - —)2 is zero a value obtained when

L
P, ==, A is minimum when P, = - so that the minimum

5
L L L
conﬁned area occurs when P, = 3 and P, =L — 3= 35
. L
that is, Py = Py = 5

Since P, > 0 we find, by inspection, that 4 is maximum when
P, = 0so that P, = L, or P, = 0 so that P, = L; that is, the
maximum combined area occurs when all of L is used for just
one triangle.
COMMENT: Note that the maximum A4 equals twice minimum A.

Find the least value of x* + y* subject to the restriction x% +

y2 = c2.

Let F = x* 4+ y* = (x2 + y?)% — 2x%y2. )
Smce 2x2y2 > 0, Fis obv1ously least when 2x2y? is greatest, and

2x3p? is greatest when x2y? is greatest.

. . c?
Since x? + p? = ¢?, x?” is greatest when x® = % = =~
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(If the sum of two numbers is a constant, their product is greatest
when each is half the constant.) Therefore, x2y%(max) =

4
0—22%2 = %,andson 2y2(max) = 2-c—44 = %
4
Therefore, from (I), F(min) = (c%)% — 9— = 92— .

Challenge Find the least value of x® + y® subject to the restriction
xX+y=c

3
Follow the pattern of the original solution. The answer is % .

13-10 Find the value of x such that S = (x — k)® + (x — kg)? +
- + (x — ku)? is @ minimum where each ki, i = 1,2,...,n,is
a constant.

METHOD I: Using the symbol 3~ for summation we write

S= 2 (x— k)%= 2 (x2— 2xk; + k).
i=1 i=1

When written out, the terms of S are (x2 — 2xk; + k%) +
(x% — 2xky + ko?) + (x* — 2xks + k3®) + -+ +
(x2 — 2xk, + k,2).
Therefore, S = (x2 + x2 4+ x2+ -+ ) — 2x(tky + ko + -+ +
ko) + (ki + ko 4 -+ 4 kP

Since, in the complete expansion of S, the term x2 appears n
times, S = nx? — 2x3_k; + k2. To the right side we add zero

in the form of (n )(Zk 2 (Zk) so that

S=n (x — 2 an (Zk )2) 4+ Tk — (Zk.)

Henoe,S=n(x—Zk—) +Zk,~2—(~z'l:—)'

n

N 2
The minimum value of S occurs when (x — ;ni) equals

zero (see Problem 13-8); that is, when x = an— , which, interpreted,

means that x is the arithmetic mean of the k..

METHOD 11: Compare the expression S = nx% — 2xY k; + Y k;?
with that of y = ax? + bx + ¢, the equation of a parabola.

. . b .
As minimum y occurs when x = — -, so minimum S occurs
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METHOD IIi: If you are familiar with the calculus, solve the
problem with the use of the first derivative.
ILLUSTRATION: S = (x — 2)2 + (x + 3)2;

Thki  24(=3) 1

=2 ST 2 T T2

S(min) = 2 + 2 - 1]

. 2 ):k, —12 _ 1.1
S(min) = Tk; =13 — ——2 13—3=12

13-11 If |x] < c and |x — x4| < 1, find the greatest possible value of

13-12 Show that the maximum value of F =

%12 — x2.

|12 — x2| = |x; + x| |x; — x].

Since [x; — x| £ 1,

%12 — x| < |x1 + x| = [2x + x; — x|

Therefore, [x;2 — x| < [2x] + |[x; — x| < 2c + 1.

A geometric interpretation is helpful (Fig. S13-11). Since
1 — x{ <1, xy £ x+ 1. Therefore, x; + x < 2x+ 1<
2¢ + 1. The maximum value of |x;%2 — x%| = |x;, + x| [x1 — x|
is represented by the area of rectangle ABCD with base DC =
2¢ + 1 and altitude CB = 1.

y

A—C—ewC=A 8
- g x|
X—¢c x xtc __
X

|

R

h

—

D c

[xpx]- 2¢+1
x
0

S13-11

ab
4 4(a—+b)'*’ N where a, b are
positive numbers, is 16
Whena =bF = —; = —;

when a = b, a+b

(a + b)?
4

> v/ab. (See Appendix IV.) Therefore,

1
> ab and, hence, (aTb)z < 2
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ab 11 1

Since F = gy F<3' 4= 1%

Therefore, F(max) = Tlé .

13-13 Find the area of the largest trapezoid that can be inscribed in a
semicircle of radius t.

METHOD I: The upper base and the (equal) legs of the trapezoid
may be considered three sides of a hexagon inscribed in the circle.
Since, of all inscribed hexagons, the regular hexagon has maximum
area, the trapezoid of maximum area is the one where the upper
base (and each leg) equals a side of the regular hexagon, that is,
where 2x = r. The lower base, of course, is the diameter. This

. 3v3 . .
value of x gives an area of % r2, a maximum (i.e., the area of

three equilateral triangles of side length r).
1
METHOD II: K = %(Zr + 2x)(r? — x%)2. Take r = 1; then K =

1
(1 + x)(1 — x2):. Using a table of square roots, if necessary,
plot the graph of K for 0 < x < 1 (Fig. S13-13). It is found that

. 1 343
maximum K occurs when x = 2 and so K(max) = —34/— .
3v3 . . .
Generally, K(max) = 44/—3 r? where r is the radius of the circle.

METHOD Ii: Use the calculus, as shown in the solution of Problem
13-10, Method III.

N\
N
=

$13-13
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14

14-1

14-2

14-3

14-4

Quadratic Equations:
Fair and Square

Find the real values of x such that 33 ~7x+3 = 4x*—x—6,

With the exponents in factored form we get: 3(x—1) (c-3) =

4 F2) (=3) p x = 3, both sides are equal to 1, and we have a
root. If x ¥ 3, we can take the (x—3)rd root of both sides to get:
3(2x=1) — 4(x+2)

logd
Therefore (2x—1)log3 =(x+2)log4. Thus,x = 1+2 {fog% }

2~ {E’ﬁf‘. }
log3

Let D = h? 4 3k? — 2hk where h, k, are real numbers. For
what values of h and k is D > 0?

D = h® 4+ 3k® — 2hk = h® — 2hk + k% + 2k% = (h — k)® +
2k2. Since (h — k)2 > 0 and 2k? > 0, D > O for all real values
of h, kexcept h = k = 0.

If the roots of x% 4 bx + ¢ = 0 are the squares of the roots of
x2 4+ x 4+ 1 = 0, find the values of b and c.

Since the roots of x2 4+ x + 1 = Q are squares of each other
(show this!), b = land c = 1.

If the roots of ax® 4+ bx 4+ ¢ = 0, a = 0, are in the ratio m:n,
find an expression relating m and n to a, b, and c.

n
. . . b
the roots of the given equation. Since r, + r; = -3 and

rnry = E, then (—- 5)2 = k%m + n)? and 2 = k’mn. There-

r m
Let = then r; = km, ry = kn, where r; and r; are
2

(_ 5)2 _ k2m 4 np?

2 2
fore, z Py and so mnb* = (m + n)“ac.
a
. . b2 m n
A second form of the relation sought is ot + 2+ .=

(D)
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Note: For equal roots, the discriminant b2 — 4ac = 0 or b2 =
4ac. With m = n = I, the first form becomes 1-1-b2 =
(1 + D?Z%ac; that is, b2 = 4ac.

ILLUSTRATION: Form = 3,n = 2, b = 5,652 = 5%ac, so that
a=6,c=1,ora=1,c=6,ora=3 ¢c=2ora=2,
¢ = 3. For example, the roots of 2x2 4 5x + 3 = 0 are —%
and —1 with a ratio 3:2.

14-5 Find all values of x satisfying the pair of equations x2 — px +
20=0,x2—20x+p =0.

CASEI: When p = 20, the equations are identical and satisfied
by two values of x, 10 4+ 4+/5 and 10 — 4/5.

CASE II: When p 5 20, then x? — px + 20 = x% — 20x + p,
(20 — p)x = p — 20. Since p = 20, we obtain by division
x= -1

To satisfy the given equations with the value x = —1, the
value of p must be —21.

Generally, the pair of equations x> — px — p — 1 = 0 and
x4 (p+ Dx + p = 0 is satisfied by x = —1.

14-6 A student, required to solve the equation x> 4+ bx + ¢ = 0, in-
advertently solves the equation x% 4+ cx + b = 0; b, ¢ integers.
One of the roots obtained is the same as a root of the original
equation, but the second root is m less than the second root of the
original equation. Find b and c in terms of m.

Let the roots of the original equation be r, s. Thenr 4+ s = —~b
and r + s —m = —c.
r+s=m—c¢; -b=m—c¢;, c—b=m ()]

rs=cand rs — rm = b;
rs=b4+rm, c=b+rm;, c—b=rm 1)

From (I)and (1), m = rmand r = 1.

rs=s=candr+s=14s= b, ors=~-b—1=c¢
soc+b= ~1.
Sincec—b=m(I),c=m2_l,b=_mz_l-
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14-7 If ry andr are the roots of x2 4+ bx + ¢ = 0,and Sg = 1,2 + 1,2,

14-8

14-9

Sy =11 + 15, and So=r1,° 4 1,°, prove that S, + bS; + cS¢ = 0.

METHOD I: Since S = r12 4+ ry% = (r; + rg)? — 277y, then
Sy = (—b)2 — 2¢ = b2 — 2¢,sincery + r; = —band ryry = c.

CoSe+bS +cSo=b2—2c+b(—b)y+¢c-2=0

METHOD 1I: S, + bS; 4+ ¢S
=n?4+r?+b(r +r) + c(r® + r%
=r’+brt+ct+rnitbntc
Since r; is a root of the given equation, 7,2 + br; 4+ ¢ = 0.
Similarly, 7,2 + bry 4+ ¢ = 0.
Consequently, Ss 4+ bS; + ¢So = 0.

A man sells a refrigerator for 3171, gaining on the sale as many
percent (based on the cost) as the refrigerator cost, C, in dollars.
Find C.

Since Selling Price = Cost plus Profit, 171 = C + (%0) C,

C? + 100C = 17,100. By completing the square, we get C? +
100C + 2500 = 17,100 + 2500, (C + 50)% = 140%, C 4 50 =
140, C = 90. C? + 100C — 17,100 = 0 implies (C — 90) X
(C + 190) = 0, and, hence, C = 90.

Express q and s each in terms of p and t so that the equation
x* + px3 + qx2 4+ 1x + s = 0 has two double roots u and v
where w may or may not equal v. (Each of the factors x — u and
X — V appears twice in the factorization of x* + px® + qx% +
X + S.)
Since each of the factors x — u and x — v appears twice, we may
write x* + px3 4+ gx2 + rx 4+ 5 = (x — w)(x — V)(x — u) X
(x—0v) = (x2 — x(u + v) + w)? Letu + v = —b and let
w = c; then x% — x(u + v) + w = x% + bx + c.
Therefore, x* 4+ px® + gx? +rx +s = (x2 4+ bx + )% =
x* 4+ 2bx3 + (b% + 20)x% + 2bex + 2. )
Since (I) is an identity in x, we may equate the coefficients of
like powers of x on both sides of the identity, and, therefore,

p=2br= 2bcsothat1—:= c.



Quadratic Equations: Fair and Square 183

Since s = ¢? (from I), s = ;—:, and since ¢ = b2 + 2¢ (from I),
=2,
q= 4 + p

14-10 Let f(n) = n(n + 1) where n is a natural number. Find values of n
such that f{(n + 4) = 4f(n) + 4.

Since f(n + 4) = 4f(n) + 4, (n +4H(n + 5) = 4n(n + 1) + 4.
Therefore, 3n2 — 5n — 16 = 0. This equation has no solution
in integers. Therefore, no value of n satisfies the required
condition.

14-11 If one root of Ax® 4+ Bx? + Cx + D = 0, A 5 0, is the arith-
metic mean of the other two roots, express the simplest relation
between A, B, C, and D.

Let ry, 1o, r3 be the roots of the given equation with r, the arith-
metic mean of r; and rs. Therefore, 2r, = r, + r3. Since

B ..
rn+rot+r3=— 402 generalization for the sum of the roots,
3ry = — Zsothatry = — 2 -
ro = 4 SO Fo = 34

Since r, is a root of the given equation, Ar,® + Br,?2 + Cry +
B\3 B\ 2 B
D = 0. Therefore, A (— 3_,4) + B(— Q) + C(—- 5;) +
D = 0. Simplifying, we obtain 2B% — 94BC + 274%D = 0.

Challenge Find the simplest relation between the coefficients if one
root is the positive geometric mean of the other two.

Let the root r; be the positive geometric mean of the other
two roots r, and rs, that is, let ro = /rir3. Therefore,
re? = rirsand rp® = ryrors.

. D o .
Since ryrorg = — Viks generalization for the product
D D o L.
of the roots, g2 = — RS that ro = 3 — e Substituting

this value for r; back into the original equation, we have

A+ 5D e D me

After simplification, this last equation yields B3D —
AC?® = 0.
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14-12 If the coefficients a, b, c of the equation ax® 4+ bx + ¢ = 0 are

14-13

odd integers, find a relation between a, b, c for which the roots are
rational.

We prove that if @, b, ¢ are odd integers, there are no rational
roots.

METHOD I: For rational roots, the discriminant must be the
square of an integer. Let b2 — dac = 12, and b2 — ? = 4ac =
(b — t)(b + t) where both b and ¢ are odd. (Why is ¢ odd?)
Letb = 2b;, + land lett = 2¢; + 1.

Therefore, 2b; + 1 — 2t; — Dby + 1 4+ 2t; + 1) = 4ac,
2(b1 - tl)(2)(b1 + h + 1) = 4ac,
and (b; — t))(by + t; + 1) = ac.

The product ac is odd. If b, and ¢, are each even, then b; — 1, is

even. If b, and ¢, are each odd, then b, — ¢; is even. If one of

b, t; is odd and the other is even, then b, + #; + 1 is even.

Hence, for all possibilities, (by — #,)(b; + t; + 1) is even; we

have a contradiction.

METHOD 11: Letb = 2by 4+ 1, a =2a, + 1, c = 2¢;, + 1.
Then D = b% — 4ac = (2by + 1)> — 4Qa; + DQRc; + 1) =

8[22Y 241, — ay — e — 1]+ 5. Since 2ED s

integral, then D = 8k + 5. If D = N2, with N odd, then,

N2 = 8k + 5. However, the square of an odd number leaves a

remainder of 1 when divided by 8; that is, (4k £ 1) = 1(mod 8).
Therefore, rational roots are impossible.

If f{x)=apx*+ax+a,=0, ag=0, and a,, az and
s = ag + a; + ay are odd numbers, prove that f(x) = 0 has no
rational root.

It is not much more difficult to prove the more general theorem
for an equation of degree n, of which this is the special case
withn = 2. Iff(x) = apx + ax* ' 4+ - - 4+ a, = 0,a0 = 0,
and ag, an,and s = a¢ + ay + as + * * * + a, are odd numbers,
prove that f(x) = 0 has no rational root.

PROOF: (1) Assume that f(x) = 0 does have a rational root g

expressed in lowest terms. Then, since a, is odd, p must be odd,
and, since a, is odd, ¢ must be odd.
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(2) We have aof;—:+alz:: + °--+a,.._1§+an = 0. Clear-

ing the equation of fractions, we get app™ + a1p* "¢+ -+ +
an_1pg" "' + anq” = 0.

(3) Also, ap+a,+ -+ ap_1 + an, = odd number (hy-
pothesis).

(4) .S = a1 +p") + ar(l + p*7'g) + ax(1 + p*"?9) +
cor 4 an_1(1 + pg* ™) + an(l + ¢g*) should be equal to an
odd number.

(5) But 1 + p"iseven, | + p"~Igiseven,..., 1 4 g" is even,
so that S is even.

(6) This contradiction shows that our assumption of a rational
root was false.

The only possibility left is that f(x) = 0 has no rational root.

15 Systems of Equations:
Strictly Simultaneous

Estimate the values of the four variables in the given linear system.
Then substitute repeatedly until a definitive solution is reached.

x1 =30+ x5 + Xg + 0)
X2=£(0+0+X4+X1)
x3=%(x1+x4+l+0)
x4=£(x2+0+1+x3)

We begin by attempting a “reasonable guess™ at the values of x;,
X3, X3, and x4, assuming that such values exist.

F N

To keep things simple let us guess x; = xg = x3 = x4 =

Substituting into the given equations, we find

x=1(0+3+3+0) =5
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15-2

xo=3 (G5 +140
x=g(Gro+1+3)

Similarly, x, = 1 (0 +0+1 T 1)
) -

1,
8
3
g>and
3
8

We now repeat the process seeking to “refine” the second set
of values found for the unknowns. It happens that no further
refinement occurs, as we illustrate with x;:

1= 5(0 + % + :—; + 0) = %, the value we already have.

1 3
The values x; = x, = 3 = g are, then, the exact
values since they satisfy the given equations.

We happened to start with a fortunate guess. What if our

and X3 = X4

.. 1 .
original guess was x; = X = X3 = X4 = > ? We do obtain the
1 3 o
values x; = xy = 3:%3 = X4 =3 , but not until six “feedbacks.”

The first yields x; = x = i, X3 = X4 = % ; the second,
X = f32 = 136, X3 = X4 = 16 thegthlrd Xy = X225= 3—52,

X4 = 333 thle7 fourth, x; = X249= 6 X3 = X4 = ; the ﬁftlh
X1 = X2 =g, ¥3= X4 = 505 the sixth, xl—X2=§,
. &

COMMENT: The chief value in this method lies in finding values of
the unknowns that are approximate, involving, perhaps, several
decimal places.

For the systemx + y + 2z = a, (1))
—2x—2z=0»> an
x+3y+5z=c (1

find a relation between a, b, and c so that a solution exists other
thanx = 0,y = 0,z = 0.

Note that, if @ = b = ¢ = 0, the system is satisfied for x = y =
z = 0, but this solution, referred to as the trivial solution, is here
ruled out. We seek other solutions if they exist.

We find that the value of the system determinant

1 1 2
D= |-2 0 -1 =0
1 3 5
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For the system to be determined, that is, for solutions to exist
(Cramer’s Rule, Appendix VII), D, = D, = D, = 0 where

a 1 2 1 a 2
D, = b 0 —1f, D,=|-2 b -1},
c 3 5 1 c 5
1 1 a
D, = |-2 0 b
1 3 c

Expanding D,, we have D, = —c¢ + 6b — 5b 4+ 3a. There-

fore, 3a 4+ b — ¢ = 0, and this is the relation between a, b, and
¢ that assures non-trivial solutions. The same result is obtained
when D, is expanded and when D, is expanded.
COMMENT: To find the solutions, of which there are infinitely
many, providing 3@ 4+ b — ¢ = 0, you may choose the value of
x arbitrarily. Eliminate z from equations I and II and obtain
y = 3x — 5a 4 2c, after replacing b by its equivalent ¢ — 3a.
The value of z can then be found from equation I or equation III
tobez= —2x+ 3a — c.

To illustrate, let x =1, then y =3 — 5a + 2c and z =
—2 + 3a — c. This set of values satisfies the given system, as you
can verify for yourself, keeping in mind that b = ¢ — 3a.

Find the smallest value of p® for which the pair of equations,

(4-phx+2 =0,
2+ (7—pAy=0

has a solution other than x = y = 0, and find the ratio x:y for this
value of p*.

Multiply (4 — p%)x + 2y = 0 by 7 — p? to obtain

(4 — pH(T - P)x + (7 — p») = 0, M
and multiply 2x + (7 — pZ%y = 0 by 2 to obtain
dx 4 29(7 — p?) = 0. an
By subtracting (II) from (I) we obtain
[4 —p*)(T7 —p) —4x = 0.
Since x = 0, (4 — p%)(7 — p%) — 4 = 0; that is, p* — 11p% +

24 = 0.
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Since p*— 11p2 4+ 24 = (p2 —3)(p%2—18), p?—-3=0
and, therefore, p2 = 3. The value p% = 8 is rejected since 8 > 3.

Substituting p? = 3 into the second of the original equations,
we have 2x 4+ 4y = 0, so that x:y = —2;1.

coMMENT: For the value p? = 8, the ratio x:y = 1:2.

15-4 If P, = 2x* 4+ 3x® — 4x%? 4 5x + 3,
P, =x%4+2x2-3x+1,
Py = x4+ 2x3 —x24+x+2,

15-5

and aP; + bP; + cP3 = 0, find the value of a + b + c where
abc # 0.

aP, + bPy + cP3 = 2a + o)x* + (Ba + b + 20)x® +
(—4a+2b—)x*+Ga—3b+c)x+ Ba+b+ 2)=0.
Therefore, (1) 2a4+c¢c=0 (2 3a+ b+ 2c=0 (3) —4a+
2b—c=0®F5a—-3b+c=00)3a+b+2c=0.

By addition of the five equations, we obtain (6) 9a + b +
5¢c=0.
From equation (1), ¢ = —2a or —8a — 4c = 0. Adding
—8a — 4c = 0 to equation (6), we obtaina + b+ ¢ = 0.
COMMENT 1: Takinga = 1, b = 1, ¢ = —2, verify the statement
P1+P2—2P3=0.
COMMENT 2: Since aP; + bP, + cP3 = 0 and, at least, one of

a, b, and c is not equal to zero, and Py, Py, P3 arc said to be
linearly dependent.

Iffi=3—y+2z24w,

fo = 2x 4+ 3y — z 4 2w,

fa = 5x — 9y + 8z — w, find numerical values of a, b, ¢ so
that af, + bf; 4 cf3 = 0.

For afi + bfs +¢fs =0, 3ax+ 2bx+ 5cx =0, —ay+
3by — 9¢cy = 0, 2az — bz + 8¢z = 0, and aw + 2bw — cw =
0. (See Problem 15-4.)
Ja+26+5c=0,x=0
—a+4+3b—-9=0,y=0
2a—b+8=0,z0
a+2b—c=0w=0

c.a= =3¢, b=2
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Wecantakea = 3,b = —2,and ¢ = —1.
But we may also use any values for g, b, ¢ that are proportional to
3, -2, —L
COMMENT: f, f2, f3 are linearly dependent.

15-6 Find the common solutions of the set of equations

x—2xy +2y = —1 O
x—xy+y=0. an

x = 1 (equation II — equationI).".xy — y = landy = x——l__—l .

Consequently, there are no finite solutions.

The geometric picture makes this clear (Fig. $15-6). Neither curve
I (x—2xy4+2y= —1), nor curve II, (x —xy +y = 0),
crosses the line x = 1, indicating that the value x = 1 fails to
satisfy either equation. However, as we approach arbitrarily close
to x = 1, both on the right and on the left, the curves approach
arbitrarily close to the line x = 1. Such a line is known as an

asymptote.
y
t\i
1l ) P~ 1
i 0 11,
N\ |1 ]
S156
15-7 Solve the system 3x + 4y + 5z = a,

4x + 5y + 6z = b,
5x + 6y + 7z = c,

a, b, c arbitrary real numbers, subject to the restriction x 2 0,
y20,z>0.

For a = b = ¢ = 0, there is no solution because of the restric-
tionsx>0,y>0,z> 0.



190 SOLUTIONS

15-8

3 4 5
Since the system determinant D = (4 5 6| =0,
s 6 7

there can be solutions only if D, = 0, D, = 0, and D, = 0 where

a 4 5 3 a5 3 4 a
D,=|b 5 6/, D,=i{4 b 6/, and D,= {4 5 b|:
c 6 17 5 ¢ 17 5 6 ¢

(Cramer’s Rule; Appendix VII)

Setting D, = 0, then, we find 2b = a 4+ ¢ (setting D, = 0
or D, = 0 yields the same result). But 2b = a + ¢ implies that
a, b, ¢ are in arithmetic sequence.

With g, b, ¢ in arithmetic sequence, we have the one inde-
pendent equation 4x 4+ 5y + 6z = b. However, to insure that

2> 0, b>4x+ 5p. We then obtain z = 1 (b — 4x — 5y)

where b — 4x — 5y > 0. An infinite number of solutions is then
obtained by assigning appropriate values to x and to y and
solving for z.

ILLUSTRATION: Here are three solution sets just for the one choice
of b=15.)x=1,y=1,z=1 (withd=3) 2) x=1,

y=2z=3(withd=3) @) x=2 y=1,z=1 (with
d= 3%) where d represents the common difference of the arith-

metic sequence.

For a class of N students, 15 < N < 30, the following data were
obtained from a test on which 65 or above is passing: the range of
marks was from 30 to 90; the average for all was 66, the average
Jor those passing was 71, and the average for those failing was 56.
Based on a minor flaw in the wording of a problem, an upward
adjustment of 5 points was made for all. Now the average mark of
those passing became 79, and of those failing, 47. Find the number
Ny of students who passed originally, and the number N; of those
passing after adjustment, and N.

66N = TINo + 56(N — No), and 7IN = 79N, + 47(N — N}).

S No=3N, N =3iN and N, = 3N,
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Ny = gN, so that N is a multiple of 8 and N; is a multiple
of 9, since Ny and N; are integers.

However, since Ng = %Nand I5< N<30,10 < Ny < 20,
and, since Ny = 3 No, 113 < Ny < 225 -
Since Ny is a multiple of 8, and 10 < Ny < 20, Ny = 16.
Since N is a multiple of 9, and 11; < Ny < 22;, Ny = 18,
Since No = 2 N and Ny = 16, N = 24,

16 Algebra and Geometry:
Often the Twain Shall Meet

Curve I is the set of points (x,y) such that x =u 4+ 1,y =
—2u + 3, u a real number. Curve 11 is the set of points (X, y) such
that x = —2v+ 2, y=4v+ 1, v a real number. Find the
number of common points.

Sincex =u+4+ 1, u=x— 1, and, since y = —2u + 3, then
u= -3%)’ Thus x — 1 = %’, or 2x + y = 5. Therefore,
curve 1 is a straight line. Since x = —2v 4+ 2, v = 2 ; o]
2—-x y-—1

2 T 4
2x + y = 5. Therefore, curve 1l is a straight line coinciding
with curve 1. The number of common points is infinite.

’

and, since y = 4v + 1, thenv = y—}—l . Thus ,or

Let the altitudes of equilateral triangle ABC be AA,, BB,, and
CC,, with intersection point H. Let p represent a counterclockwise
rotation of the triangle in its plane through 120° about point H.
Let q represent a similar rotation through 240°. Let t represent a

rotation of the triangle through 180° about line TAI. And let s, t
represent similar rotations about lines BBy, CC,, respectively.
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16-3

If we define p * r to mean “‘first perform rotation p and then
Dperform rotation t,” find a simpler expression for (q * r) * q; that
is, rotation q followed by rotation r, and this resulting rotation
Jfollowed by rotation q.

The rotation g followed by the rotation r is the equivalent of
the single rotation s; that is, ¢ * r = s (Fig. $16-2). The rotation s
followed by the rotation g is the equivalent of the single rotation ¢;
that is, s * ¢ = 1. Therefore, (g *r) *q = 1.

. YAVAN

C A rotationp B C rotationg A

AVAVAN

C rotationr B B rotations A A rotationt C

Figure S16-3 represents a transformation of the segment AB onto
segment A'B’, and of BC onto B'C’. The points of AB go into
points of A’B’ by parallel projections (parallel to AA"). The points
of BC go into points of B'C' by projections through the fixed
point P.

The distances from the left vertical line AM are zero for
point A, 3 for point B, 4 for point C, 5 for point B’, and 2 for point
A’(C"). Designate the distances of the points on AC from AM
as x, and the distances of their projections on A'B'(C'B’) from
AM as f. Find the values of t and s of the transformation functions

=rx+s@pro<x<L3d)or3i<x<4

A Xy 8 X, Cc

B

S$16-3
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16-6
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The transformation function is f = rx + s where f is the dis-
tance on A'B’ from AM of the image point of a point on 4B
whose distance from AM is x. (a) For the point 4, x = 0, and
for the image point A’, f = 2. Thus, 2 = 0 + s so that s = 2.
For the point B, x = 3, and for the image point B/, f = 5, so
5=3r+s.Sinces=2,5=3r+2sothatr = 1.

Therefore, the first transformation function is f = x + 2,
0< x<3.

(b) For the point B, x = 3, and for the image point B’, f = 5,
so 5 = 3r + 5. For the point C, x = 4, and for the image
point C’, f = 2, so that 2 = 4r + s. Solving the pair of equa-
tions5 =3r+sand2 =4r+ s,wefindr = —3and s = 14,
Therefore, the second transformation functionis f = —3x + 14,
3<x<4

Given the three equations (1) 7x — 12y = 42 (2) 7x + 20y = 98
(3) 2Ix + 12y = m, find the value(s) of m for which the three
lines form a triangle of zero area.

The triangle formed will have zero area when the lines represented
by the equations are concurrent.

Lines (1) and (2) intersect in (9, %) . For line (3) to pass
through this point, the coordinates must satisfy equation (3).

~.2109) + 12 (g) =m, m=210

Describe the graph of \/x2 + y2 = y.

x2 4 y2 = y2, x? = 0, x = O (the y-axis). However, the given
equation implies that y > 0, since 4/x2 + y2 is a non-negative
number. Hence, the graph is that part of the y-axis such that
0 < y < oo, that is, the part on and above the x-axis.

Transform x® — 3x — 5 = 0 into an equation of the form
aX? + b = 0 where a and b are integers.

Let x = X + c; then, by substitution,
X242 X+c2—-3X—-3¢c—-5=0.
X+ Q—-DX+c2-3¢—-5=0

-.-2C—3=O,andc=§’cz-—3c_5= _2.
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Thus X2 — % = 0, or 4X% — 29 = 0, is the required equation.

16-7 It is required to transform 2x,2 — 4x;x5 + 3x,2 into an expression
of the type aiy,% + azys® Using the transformation formulas
Y1 = X1 + cxg and y; = Xy, determine the values of a, and a,.

METHOD I: Substitute into the expression a;y;% + azyq2? the
formulas y, = x; + cxzand y; = x,to obtain a;(x; + cx2)? +
ay(x3)2. Expanding this last expression, we obtain

2
ayx, + 201CX1.X2 + 01C2X22 + 02X22. (I)

By the conditions of the problem, (I) is identically equal to
2x12 - 4XIX2 + 3X22.

Therefore, a; = 2, 2a;c = —4 so that ¢ = —1, and
a; + as = 3 so that a3 = 1.

METHOD Ii: From the formula y; = x; + cx; we have x; =
Y1 — cx3, so that x; = y; — cys since y; = xp. Substituting
these values into the expression 2x;2 — 4x;,x2 + 3x22, we obtain,
after simplification,

2912 — (4c + dyrys + 2c% + 3 + 4oyt an

Set (II) identically equal to a,y;2 + ayps?. Therefore, a; = 2,
4c + 4 = 0 so that ¢ = —1, and 2¢2 + 3 + 4c = a, so that
g =2+3—4=1

16-8 N.B. and S.B. are, respectively, the north and south banks of a river
with a uniform width of one mile. (See Fig. S168a.) Town A is
3 miles north of N.B., town B is 5 miles south of S.B. and 15 miles
east of A. If crossing at the river banks is only at right angles to
the banks, find the length of the shortest path from A to B.

o 1—ed

S16-8a
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Consider the banks merged; then, obviously, the shortest path is
the segment AB. (See Fig. $16-8b.) AB? = 152 + 82, 4B = 17.
Since at the crossing point C there is a displacement of 1 mile,
the shortest path is 17 + 1 = 18 miles.

From the proportionality of the sides of similar triangles, we

find that the crossing point is 52 miles east of 4 on N.B.

I S8 ul
|5
|
8 S16-8b

Challenge If the rate of land traveI is uniformly 8 m.p.h., and the rowing

rate on the rtver is 1 m.p.h. (in still water) with a west to

east current of l m.p. h , Jfind the shortest time it takes to go
JSrom A to B.

The time required for land travel is 17 + 8 = 2% hours.
For the river crossing, the boat is pointed in the direction
of segment CD whose length is 1 miles (Fig. Sl6-8c) Hencc,

the time required for the river crossmg is 1— l— =

1 hour. The total time is, consequently, 2 +1= 3 hours.

D C S16-8c

16-9 Let the vertices of a triangle be (0, 0), (x, 0), and (hx, mx), m a
positive constant and 0 < h < oo. Let a curve C be such that the
y-coordinates of its points are numerically equal to the areas of
the triangles for the values of h designated. Write the equation of
the curve C.
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Let the segment determined by (0, 0) and (x, 0) be the base of the
triangle; then the altitude to this base is mx. Therefore, y =

%x(mx) = %mxz. If x is restricted to the values 0 < x < oo,

the curve is the right half of the parabola y = %mxz.

Challenge Let the vertices of a triangle be (0, 0), (x, 0), and (g , mx) ,

m a positive constant. Let a curve C be such that the y-
coordinates of its points are numerically equal to the perim-
eters of the triangles thus formed. Write the equation of
curve C.

The equation is y = x(1 + /1 + 4m2), a straight line.

16-10 Each member of the family of parabolas y = ax® + 2x + 3 has
a maximum or a minimum point dependent upon the value of a.
Find an equation of the locus of the maxima and minima for all
possible values of a.

METHOD I: Consider the general case y = ax2 4 bx + c. The

turning point (maximum or minimum) is on the axis of symmetry
. . b

of the parabola, whose equation is x = — % and, hence, the

. . . b .

x-coordinate of the turning point is — 5. To find the y-coordi-

. . . b .
nate of the turning point, substitute — — for x in y = ax? +

2a 2
bx 4+ c. After simplification we find y = — Z—a + ¢. Since,
b b b b
however, — 5, = X Wwe have y = 5(—5) +c=§x+c.

Therefore, for the general case, the required locus equation is
y= gx + ¢ (independent of a!).

In the given problem b = 2 and ¢ = 3. Hence, the required
equation for the given problem is y = x + 3.

METHOD Ii: In addition to the turning point with coordinates

b —b2 . . .
(— % 2a T+ c) , the required locus contains the point (0, c).

2a
Therefore, for the general case, the required equation is
— h2
—e 4: +c—c
i 0= 3 , which, after simplification, becomes y =

-2 -0
b 2a
5 X + ¢. For the particular case where b = 2, ¢ = 3, and

a=a,wehavey = x 4+ 3.
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16-11 Let A, B, and C be three distinct points in a plane, such that
AB = X > 0, AC = 2AB, and AB + BC = AC + 2. Find the
values of X for which the three points may be the vertices of a
triangle.

AB = X. Since AC = 2AB, AC = 2X. Since AB + BC =
AC+ 2, BC= X+ 2.

Since AB+ AC > BC, X+2X> X+2, .. X> 1.

Since AB + BC > AC, X + X 4+ 2 > 2X, .". X is any (positive)
number.

Since AC+ BC > AB,2X+ X+2> X, .. X > —1.

The intersection of these three sets of X-values is the set X > 1.

16-12 The area of a given rectangle is 450 square inches. If the area
remains the same when h inches are added to the width and h inches
are subtracted from the length, find the new dimensions.

Let L (inches) represent the original length, and let W (inches)
represent the original width, with L > W. By the conditions of
the problem LW = 450 and (L — h)(W + h) = 450.

Therefore, LW = (L — h}(W + h) and so LW = LW +
h(L — W) — h2. Therefore, (L — W) — h® = Qor h(L — W —
h)=0.Forh= 0,L — W — h=0sothat h = L — W. Hence,
thenewlength L’ = L — h=L — (L — W) = W, and the new
width W =W+ h=W+ (L—- W)= L.

COMMENT 1: When A =0, L = W since h = L — W. Then
L' =W =Land W' = L = W so that there is no change in
the dimensions.

COMMENT 2: When A > 0, L > W. Then L' = Wand W' = L,
and the change is merely one in name, the original width be-
coming the new length and the original length becoming the new
width. Why is this so?

COMMENT 3: An expression such as LW = A4 where 4 is a con-
stant, or, more generally, xy = ¢ where c is a constant, illustrates
inverse variation in the variables x and y. To keep the product
constant, a change in one variable needs to be offset by a “proper”
change in the other. How do we determine the “proper” change?

COMMENT 4: Since xy = ¢,y = f . Let us, for example, change y
to g y so that y' = g y. Since, also, X'y’ = ¢, then X’ = }c—,, and,
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since y = b and y = < 3 we have x' = (¢) = (g)(ﬁ) There-

3
fore, ¥’ = —. As verification we have x'y’ = (%x) (%y) =Xy = c.
Note that the multiplier of y, : , is the reciprocal of the multiplier
for x, 431

COMMENT 5: In the problem here posed, we have L changed to

L — h so that L’ = (L—_h) L, and W changed to W + h so

w
that W’ = + h

W are reciprocals, their product is 1. Hence

) W. Since the multlplymg factors for L and
—h W+th

I = L
When simplified, this equation becomes /(L — W — h) = 0, so
that, as we have already found, # = 0 or A = L — W. These
values for h lead, respectively, to the results L’ = L and W’ =
W,and L' = W and W’ = L. In Challenge 1 we illustrate
further the importance of comment (4) above by introducing a
significant change in the dimensions.

Challenge 1  Solve the problem when 12 inches are added to the widlth,
and 10 inches subtracted from the length.

Let us increase the width by 12 inches and decrease the length
by 10 inches. Then LW = (L — 10)(W + 12). . LW = LW +

12L — 10W — 120 *. 12 — 10W = 120, and so W = 212,

Consequently, LW = L (ng—O_sz) = 450; L? — 10L —
375 =0; (L — 25)(L + 15) = 0. L = 25and W = 18. Therefore,
L'=L—-10=15and W' = W + 12 = 30.

We note that W was changed from 18 to 30, that is, W' =

18 Ow — W and that L was changed from 25 to 15, that is,
15

L' = L = < L This illustrates the point made in comment (4)

above that the multiplying factor for one of the variables, g’

is the reciprocal of the multiplying factor for the second variable,

3 . . .
5 when the product of the variables is to remain constant.

16-13 Show that if the lengths of the sides of a triangle are represented by
a, b, and c, a necessary and sufficient condition for the triangle to
be equilateral is the equality a® + b2 + c? = ab + bc + ca.
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That is, if the triangle is equilateral, then a® + b% + ¢? = ab +
be + ca, and ifa® + b% + c% = ab + bc + ca, then the triangle
is equilateral.

The condition is necessary. Given AABC witha = b = ¢, prove
a?+ b+ c® = ab + bc + ca.
(1) a= b, so ab= b2, b=c, so bc = c?; ¢c =a, so ca=a’
() ..ab+ bc + ca = a® 4+ b + 2

The condition is sufficient. Given A ABC with sides a, b, and ¢,
anda? 4+ b2 + ¢ = ab + bc + ca, prove a = b = c.
(M) a®+ b2+ c%2=ab+ bc+ ca
et —ca—cb+ab= —a® 4+ 2ab — b2
.—(@a— b2 = (c— a)c— b)
If ¢ > b > aorc> a> b, the left side of (1) is negative while
the right side is positive, a contradiction.
Q@ —b—-09>=(@—ba—o
Ifa> b > cora> c > b, the same contradiction appears.
B) —(—a?=(@0b-c)b—a)
If b> ¢ > aor b> a> c, the same contradiction appears.
S.a=b=c¢

16-14 Select point P in side AB of triangle ABC so that P is between A
and the midpoint of AB. Draw the polygon (not _convex)
PP1P2P3P4P5P6 such that PP] “ AC P P2 ” AB P2P3 ” CB
P3P4 ” AC P4P5 ” AB P5PG ” CB with P], P4 in CB P2, P5 in
AC, P3, Pg in AB. Show that point Pg coincides with pomt P.

Designate the length of AP by kc, where 0 < k < 5. Then

CPy = ka, CP, = kb, BP3 = kc, BPy = ka, AP5 = kb, APg =
kc. But AP = kc. Therefore, Pg coincides with P.

16-15 Let P,P,P3 ... PP, be a regular n-gon (that is, an n-sided
polygon) inscribed in a circle with radius 1 and center at the origin,
such that the coordinates of P, are (1,0). Let S = (P,P3)% +
(P1P3)2 + - -+ + (P,P,)2. Find the ratio S:n.

METHOD I: Designate the length of PP, by d), the length of
PPz byd,, ..., PP, by d,_;, and, in general, for any point
P;, the length of P,P; by d;_,, where i = 2,3,.
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Using the Law of Cosines, we have
d?=124+12-2-1- lcos— 2(]—-cos~)
d?2 =124+ 12— 2-1-1eos ™ = 2(1 — cos &)
=12+ 12 =21 lcos(i— )
2(1—cos (i — DZ)

. 2 _ - -
dany =12+ 17 = 2-1-Tcos[ — (= D] =
= 2(1 + cos (i — l)—’r)
since [— e U 1)] = is the supplement of (i — 1)—, where
5—G=D>0.

Therefore, d?_; + dg_(,-_l) = 2-2. When # is even, P%»H
is one of the vertices, but when » is odd, Pg+1 is not one of the
vertices. In either case dn is a diameter, since dgz =2 (l -

2 2)—2(1 —COS1r)—2 2, sodn—2

Therefore, S = d12 + do? + -+ + d?’_, = Z d? =

§-2-2=2n.Hence,s:n=2n:n_21 =1

METHOD I1: From right triangle P;P,A (see Fig. S16-15) we have

d? = (l - cos%)2 + sin2 (%:5)

d\?= (1 — cos %)2 — §%sin? (i—') (replacing 1 by —i?%)

y P,
d,
1 sin 22
2
0 cos & A P I(LO)
1-cos ¥

S16-15
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Factoring the difference of two squares, we have
2 .2 2 L. 2
di? = (l — cos = + ism—f)(l — cos = — 1sm—') .
n n n n
—2x . —2x 2x . 2x
2 . % . T _ il . i
d,* = [1 (cos . + isin p )][1 (cos o + isin n)],

since cos (— 27') = COS 27:5and sin (— Zn—') = —sin % . We may
now write d; 2 = (1 — w)(1 — w"™!) where w is the first imagin-
ary root of the n n-th roots of 1 and w*~! is the (n — 1)-th
imaginary root. We, therefore, have d;2 =1 — w — w*™! 4
wt =2 —w— w" lsince w® = 1.

In a similar manner we obtain
=0 —we)(l —W)=2—w—w},
and do? = (1 — wHU — w3 =2 — w2 — w2,
and d?_5 = (1 — wo_o)(1 — w%) = 2 — w2 — w2,
and so forth.
S8 = d12+d22+d32+“‘

=2 —2w+wi4wit - w3 w2 4wl

.8 =20 — 22020 (See Appendix VIL)

Since, however, w" = 1, S = 2n,and S:n = 2:1

17 Sequences and Series:
Progression Procession

Find the last two digits of N = 11!° — 1.

N=11"Y"—1=@104+DY—1=10Y410-10° 4+ - - - +
10-10 4+ 1 — 1 (See Appendix VI.) Each of the terms 10!® +
10-109 4 -+ 4+ 10-10 ends in at least two zeros. Conse-
quently, there is a common factor of 100 so that N ends in 00.
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, . L. 1
17-2 Give a recursive definition of the sequence {R} , 0 a natural number.

. . 1 . . . .
Since the reciprocals of an are in arithmetic progression,

1 _I(L _1
S+ 2\f) " fn+2)

2f(n)f(n + 2) 1 1
St ) = sy S =5, Q) =5

17-3 A perfectly elastic ball is dropped from height h feet. It strikes a

, h
perfectly elastic surface 4|7 seconds later. It rebounds to a

height th (feer), 0 < r < 1, to begin a similar bounce a second
time, then a third time, and so forth. Find (a) the total distance
D (feet) traveled and (b) the total time T (seconds) to travel

D feer.
=h+2th+ 22h + -+ = 12_,',—h=h(1+’)(Se
Appendix VIL.)
\/ +2(+2,/ r*h
2 -
=1—\/7_ 1_6=T'1 r(SeeAppendxxVIl)
17-4 For the arithmetic sequence a,, a,, ..., ag, it is known that

a7 + ag = ayq. Find each subsequence of three terms that forms
a geometric sequence.

a;¢ = a; + 15d, where d is the common difference, a; =
a, + 6d and ag = a, + 8. Since a; + ag = a4, a1 + 6d +
a; + 8 = a; + 15d. Therefore, d = a;. Therefore, the i-th
term of the sequencea; = a; + ({ — )d, wherei = 1,2,3,...,
16. Since d = ay, a; = a, + ia;, — a, = ia; so that a; = la,,
dg = 201, az = 301, PN

Consequently, one subsequence forming a geometric sequence
is ay, a4, a4 (with a common ratio r = 2). A second subsequence
is a,, a3, ag (with a common ratio r = 3). A third subsequence is
a,, ay, a,¢ (with a common ratio r = 4). The fourth, fifth, and
sixth subsequences are ag, a4, ag (r = 2); as, ag, a1z (r = 2);
a4, ag, aig (r = 2).

For non-integer values of r such that 1 < r < 4, we have

3 4 ..
only r = 5 and r = 3280 that additional sequences are a4, ag,

ag and ay, a3, aje.
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17-5 The sum of n terms of an arithmetic series is 216. The value of the
first term is n and the value of the n-th term is 2n. Find the common
difference, d.

Since the sum of »# terms of the given arithmetic series is 216,
we have (see Appendix VII) n(n + 2n) = 216, n = 12. (Why
isn = —12 not acceptable?).".2n =24 = 12 4+ 1ld, d = 5

17-6 Find the sum of n terms of the arithmetic series whose first term is
the sum of the first n natural numbers and whose common difference
is n.
Probably the difficult part of this problem is the seemingly con-
fusing language!
Let T, be the first term of the given series where T, =

Sn(n + 1). (See Appendix VIL) Then

S=Ta+ Tn+n+ Tn+2n)+ - 1

| + (Tn+ (n— Dn) = En(ZT,, + n% — ).
.S = En(nz—}-n—}-n2 —n) =n
ILLUSTRATION: Let n = 4, then T, = %(4)(5) = 10. The series
is 10 + (10 + 4) + (10 + 8) + (10 + 12) = 64 = 43,

Challenge Prove that the sum of n terms of the arithmetic series, whose
first term is the sum of the first n odd natural numbers, and whose
common difference is n, is equal to the sum of n terms of the
arithmetic series whose first term is the sum of the first n natural
numbers and whose common difference is 2n.

Let O, be the first term of the series first described. Then O, =
14+34+54- -4 @n— 1) = n? (See Appendix VII.)
S1=0a+ On+m+-+4+(On+ (n—1n)
= ln(20 +n%—n)
2
=—n(2n + n? —n)=—n3—"3
Let T, be the first term of the second series. Then
Sy = Tn+(Tn+2n)+(Tn+4”)+"'+(Tn+2(”_ 1)n)
= 1n(Q2Tw + 2% — 20)

2
% 3—"7,so that S, = S,.

%n(n2+n+2n2 2n) =
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17-7 In a given arithmetic sequence the t-th term is s and the s-th term
isrt, r # s. Find the (r + s)-th term.

Since the sequence is arithmetic, the r-th term is a + (r — 1)d,
where a is the first term and d is the common difference. Therefore,
s = a + (r — 1)d. In a similar manner we obtain

r=a+ (s — 1) ¢))
By subtraction, s — r = (r — s)d. Dividing both sides of the
equation by r — s, we have d = —1. Therefore,a = r 4+ s — 1

(from I). Also, since the (r + s)-th term is a + (r + s — 1)d,
we have the (r + s)-th term equal to a + a(—1) = 0 (sub-
stituting —1 ford and r + s — 1 for a).

Challenge If So = 3 (r + )¢ + s — 1), find .
Since 3 -+ 5)(r+5 = 1) =3 ¢ +5 = D +shn=r+s—1

or r 4 s.
Since the (r 4+ s)-th term is zero, this is possible.
ILLUSTRATION: Let r = 5, s = 9. Then, since d = —1, a = 13.

The first 14 terms of the sequence are 13, 12, 11, 10, 9, 8, 7, 6,
5, 4, 3,2, 1, 0. The 5th term is 9, the 9th term is 5, the 14th term
is zero, and the sum of thirteen terms equals the sum of fourteen
terms.

17-8 Define the triangular number T, as T, = %n(n + 1), where
n=20,1,2...,n,..., and the square number S, as S, = n?,
wheren = 0,1,2,...,n,.... Prove
@ Tays = Ta+ 041 (8) Saps = Sa + 20 + 1 (€) Snys =
Tay1 + Ta (d) Sa = 2T — n. (See Fig. S17-8.)

1
@ Topr = 30+ Da+2) = 30+ 1) + 31 +2)
=+ D+ l=To+n+1
b Sspu=@+D)2=n’+2n+1=S.+2n+1
© Snpr = @+ DO+ 1) = 36+ D+ 1 +2)
=i+ DE+ D+ 00+ ) =Top + T

d)Sp=Ssy1—2n—1=Thoy1+Tn—2n—1
Tn+n+ 14Ty, —2n—1=2T, — n
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T+d+1=T, S,+2 341=8, T+T,~S, 27T,-5=5,
T+n+1-T7,,, S,+2n+1-S,,, T +T-S 2T,-n=3$
S17-8

17-9 Beginning with the progression a, ar, ar2, ar3, ..., ar"™}, ...,
form a new progression by taking for its terms the differences of
successive terms of the given progression, to wit, ar — a,
ar? — ar, ... . Find the values of a and t for which the new pro-
gression is identical with the original.

Since the progressions are the same, so are the (# — 1)-th terms.

ar* —ar" "' =@ Clart = 2ar"?
Fora # 0,r # 0, r = 2. For r = 2, a is arbitrary.
ILLUSTRATION: From 3, 6, 12, 24, 48, ..., we obtain 6 — 3,
12—6,24 — 12,48 — 24, .., ;thatis 3,6,12,24, ....

17-10 The interior angles of a convex non-equiangular polygon of 9 sides
are in arithmetic progression. Find the least positive integer that
limits the upper value of the common difference between the
measures of the angles.

We may represent the angle measures bya,a + d, ..., a + 8.
..9a + 36d = 7(180), or a + 4d = 140. Also, a + 84 < 180.
(Why?)

Therefore, 4d < 40, d < 10; that is, the common difference is
less than 10°.

17-11 The division of sﬁ , where t < s, that is, where t is very much

smaller in magnitude than s, is not exact, and is unending. If,
however, we agree to stop at a given point, the quotient is a poly-

nomial in g whose degree depends upon the stopping point. Find a

Lo T L ,
second-degree polynomial in p best approximating the function

S
P where 1 < s.
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We may divide the numerator and the denominator of s_':_—r by s

to obtain - . By actual division, or by binomial expansion,
1+
5
1 2 3 )
we find 1—+£= 1 ——£+ (i) - (g) +---. Since r<s,
5

(f) - (5) + - - - . For a second-degree polynomial approxima-

tion to —— + , we therefore have 1 — - + ( )

ILLUSTRATION 1: Suppose r = .1 and s = 10. Usmg the approxi-

mating polynomial, we have 1 — (]0) .9901. By
=‘—°=‘—°—=.99oo99oo....

s+r 10 + .1 10.1
The approximate value agrees with the exact value in the fourth
decimal place.

ILLUSTRATION 2: Suppose r = —.1 and s = 10. Using the
—1\2
approximating polynomlal we have 1 — 101 + (1—01 = 1.0101.
10
Working directly with -——, we have o—1°= 5—5 = 1.0101.

Again there is agreement to four decimal places.

17-12 When Po(x) = 1 + x + xZ + - -+ + x™ is used to approximate

the function P(x) = 1 + x + x2 4+ -+ + x" + -+ - when x = 5
(see Problem 17-11), find the smallest integer n such that

IP(X) - Pn(x)l < .00l.

1 1 1 1 1 1 4 1
Po(@)=tHi+mt o g=i(s—5) =3 ygte
Appendix VII), while P( ) LT

3
1 4 (4 1 1 1
Whenx = 1, 1P = P09l = [§ = (5~ 775) | = 7% <

so n > 5, when n is an integer.

Challenge 3 Show that the values of n are large for those values of x
that are toward the middle of the interval (—1, +1).
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HINT FOR PROOF: First show that for any x in —1 <
x < 1, [P(x) — Pa(x)| =

el = 1)

17-13 Find the numerical value of S suchthatS = ag+a; +as+ - +

a, + - whereag = 1,2, = 1", and any s = 2, — anq.
-1 £+/5
a; = ap — ay .‘r2=l—r,r2+r—l=0,r=—2—§/—
3 1 3443
Therefore, S = Trvi= 7 O
1_4
2
1 3-4/53
S_l —1 -5 2
- 2

Challenge Solve the problem with ay = 2.
r = —2 or 1; but both must be rejected. Why?

17-14 A group of men working together at the same rate can finish a job
in 45 hours. However, the men report to work singly at equal
intervals over a period of time. Once on the job, however, each
man stays until the job is finished. If the first man works five times
as many hours as the last man, find the number of hours the first
man works.

The number of man-hours required for the job is & = 45n where
n represents the number of men. Let x represent the number of
hours the first man works. Then the second man works (x — d)
hours where d is the hour interval between the first and second
man, and the #-th man works x — (n — 1)d hours.

LetS=x+x—-d)+x—-2d)+ -+ (x—(n—1)d) =
Sn[2x — (n — 1)d]. (See Appendix VIL)

cognl2x — (n — 1)d] = h = 45n )

4x S
=Sn-1" Substituting the value

for d into (I), we have % n(2x — %X) = 45n. Therefore, 3x = 225
and x = 75.

Since x = 5[x — (n — 1)d), d

17-15 A sequence of positive terms Ay, A, . . ., Ay, ... satisfies the re-

. . 3(1 + An .
cursive relation A, ., = -%—fx—z. For what values of A, is
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the sequence monotone decreasing (ie., Ay 2> Ag 2> 2>
An> )
For a monotone decreasing sequence, 4; > Ay > - 2>

Ay > -

A
Therefore, A, = 33_:_3/4' < A
1

3434, <34, + 4,%5V3< 4,

17-16 IfS=n® + m + D3 + (n + 2)3 + - - + (20)3, n a positive
integer, find S in closed form (that is, find a formula for S), given

that 13 + 23 4+ .- 4+ nd = %nz(n+ 2.
Let S, = 1 + 2° + 3% + -+ + )° = @0%Qn + 1?
(using the given formula for 1, 2, ..., 2n).
LetS; = 19422 3% 4+ - 4 (1 — )® = 3 (n — 1)’()?
(using the given formula for 1,2,...,n — 1).
LS =8 = 8 = 3 2@+ 1) — (= D)
= 2n2+ DGn + 1)

ILLUSTRATION 1: Find S where S = 3% + 43 + 5% 4 63

=2.3%.4-16 = 432
ILLUSTRATION 2: Find S where § = 50% + 513 4 - -+ + 1003,
§ = 3 (50)2(51)(251) = 24,001,875

17-17 If S(k) = 1 + 2 4+ 3 + - - + k, express mn in terms of S(m),
S(n), and S(m + n).

Sim+n=14+2+4+3+4+ -+ m+n)

= S0m+n)(m+n+ 1)

= 3 (m® + 2mn + n® + m + n)

—lm 4+ m+ i+ )+
S(m) = l+2+3+---+m=%m(m+l)=%(m2+m)
Similarly, S() = 5 (4% + n).

S(m + n) = S(m) + S(n) + mn
mn = S(m + n) — S(m) — S(n)
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17-18 Each a; of the arithmetic sequence a,, a;, 25, ag, a4 is a positive
integer. In the sequence there is a pair of consecutive terms whose
squares differ by 399. Find the largest term of the sequence.

METHOD I: Try 252 — ;2 = 399. Then a;% = 226. Reject,
since a, is not an integer.

Tryasz? — 252 = 399. Then ay? = 1024 = 322 .".a3 = 32and
d = 7. Therefore, the largest term is a4 = 39.

METHOD II: a9 = 25 — 2d,a, = 25 — d, a3 = 25 4+ d, a4 =
25 + 2d.

Try 252 — (25 — d)% = 399. Then d® — 50d + 399 = 0. The
discriminant is 904, so that d is not an integer. Reject.

Try (25 + d)® — 252 = 399. Then d® + 50d — 399 = 0 =
(d — T)(d + 57). Using the value d = 7, we obtain a3z = 32
and a4 = 39. With the value d = —57, the sequence is 139,
82, 25, —32, —89. With the condition in the problem that each
a; is a positive integer, this result is rejected. If the problem is
changed so that each a; is an integer, then the result 139 is
acceptable.

17-19 Let Sy = 1 + cos®?x + cos*x + - - - ;let S; = 1 + sin?x +
sin*x 4+ letSg = 1 + sin? x cos® x + sin*xcos*x + -+,
withQ < x < 3. Show that Sy + S; = $1S,, and that Sy + S, +
S3=5152S3.

1
For0<x<§,0<cosx<1.'-5'1= -

1 —cos2x sin? x

(See Appendix VII.)
1 1

0<sinx<1 .8 = 1 —sinfx  cos?x

S, + 8, = 1 + 1 cos?x +sin?x 1
1 2 7 sinz2x ' cos?x  sinfxcos?x  sin?xcos?x
= 815, (since cos? x + sin?x = 1)
1
Ss =

1 — sin? x cos? x

. 1 1 1

SS1+ S+ Sy = sin? x + cos? x + 1 — sin? xcos? x

cos? x(1 — sin? x cos? x) + sin? x(1 — sin? x cos? x) + sin? xcos? x
sin? x cos? x(1 — sin? x cos? x)

: = 5,5,5;

~ sin2 xcos? x(1 — sin? xcos2x)




210 SOLUTIONS

17-20 A square array of natural numbers is formed as shown. Find the
sum of the elements in (a) the j-th column (b) the i-th row (c) the
principal diagonal (upper left corner to lower right corner).

1 2 3 . . . n
n—+1 n-+ 2 . . . . 2n

2n 41 2n 4 2

(n—l.)n+1 (n—l.)n+2

(a) In the j-th column the first element is j and the last element
is (n — Dn + j, with a common difference of n. Therefore, the

sum S; = %n[j+(n— Dn + j] = %n(nz—n+2j).

(b) In the i-th row the first element is (i — 1)n 4+ 1 and the last
element is »i, with a common difference of 1. Therefore, the sum

S; = %n[(i— Dn+ 1+ ni] = %n(zni— n + 1).

(c) In the principal diagonal the first element is 1 and the last
element is n2, with a common difference of n + 1. Therefore,

the sum Sp = %n(l + n?) = %n(nz +1).

17-21 Let S = 2x 4 2x3 + 2x5 4 -+ - 4 2xZ 1 -+« "where |x| < 1,
be written as l_l’ — é . Express P and Q as polynomials in x with
integer coefficients.

S=2x(1 + x>+ x* + - + x¥"2 4 - ). Since |x] < 1,

S = 2x1+ - = (See Appendix VIIL.)

x2 1 —xt"
2x A B . T
Let —o=7—=tiT> be an identity in x. Then 2x =

A(l 4+ x) 4+ B(l — x). Letting x = 1, we find A = 1. Letting

x = —1, we find B = —1. Therefore, S = L _ .1
that P=1—xand @Q =1+ x.

1 —x l+xso

12422 4 .-- 4n

2
o , that is, the limiting value of the

17-22 Let I = Iim

n—oe

Jraction as n increases without bound; find the value of 1.
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Let S= (12 4+ 22 4 -+ + n?)

= %'%n(n + D@n +1). (See Appendix VIL.)
_ 2n3 4+ 3n2 4 n _ 2112+3n+1_
- 6n3 - 6n?

1 1 1
Therefore, $ = 3+ 5, + g5

L h
gz approac
arbitrarily close to zero. Therefore, the limiting value of .S, which

. . 1
As n increases without bound, both n and

we labeled I, equals % .

"+ 274 - " 1 .
T2+ 4n :,'ﬂ +",I —— . In this

In general, if I = lim = F 1

n—w

problem, r = 2 so that I = % .

A geometric interpretation is helpful (see Fig. $17-22). Consider
the area K between the x-axis and the parabolic arcy = x%,
0 < x < 1. Partition OA into n equal segments and erect rect-
angles as shown. The sum of the areas of these rectangles approxi-
mates K, the approximation improving with increasing n. The

. 1N2 /2\2 n—1\2 (n\2
heights of the rectangles are (;) , (;) ey ( ) s (~) s

n n

. 1
the widths are each equal to P Therefore, the sum K* equals
YA LR N EA L 1(£)2_12+22+-~-+'12 ;
n (Il) + n II) + + n \n - n3 . ASn n-
creases without bound, K* — K. But K equals the area of rect-

angle OABC minus the area of parabolic segment OBC.

2

" K=1-— 3= % (We use a theorem of Archimedes which

yb 11 8
C (0. 1)

A(1.0)
0 st ] D

] l $§17-22
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states that the area of a parabolic segment is > the area of the
circumscribed rectangle.)

2 2 2 2 . .
1723 Let S = 12+2—3+37+ --+m.FmdastmpIe
Sformula for S.
. 1 1
Noting that —— n + D= n " ny1cWemay write S as

11 1 1 1
2[T_§+§_§+S"Z+"'+ —1_E+Z—n+1]'

n

S=2 (1 - ﬁ—i) = nir-'l , since all but the first and last

terms are removed by “‘cancellation.”

Challenge Find the values of lim S; that is, % + % + 3;4 4 -
. . 1
i 5~ m (1 ) -

cOMMENT: The terms of series S are the reciprocals of the
triangular numbers % n(n + 1). (See Appendix VII.)

1
17-24 An endless series of rectangles is constructed on the curve -, each

with width 1 and hezght - — T ,n=1213.... Fmd the
total area of the rectangles.

METHOD 1: Since the width of each rectangle is 1, the area is the
same numerically as the height. The total area is, therefore,

G-D+G-D+G-D++GEH-)+
G-rp)+=lm (1) =1

METHOD I1: In Fig. S17-24, R, represents the rectangle with width 1

and height % - %, R, represents the rectangle with width 1 and
height % - % , and so on.

Let the rectangles be translated to the left to come in contact
with the y-axis, as shown by the dotted lines. Then Ry, + Ry + -+
now occupy the rectangular region whose vertices are (0, 0),
(1,0), (1, 1), and (0, 1). The area of this region is 1 X 1 =
Therefore, the total area of the rectangles as described in the
problem is 1.
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17-26
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-2
R,
1n
1 R,
b | .
0 | 1 2 3 4

S$17-24

COMMENT: An alternative way of stating this problem is, find S
where S=%+é+l—12+'”+ + --- (See Problem
17-23.)

1
nin +1)

1 1 1
LetS,,=rZ+ﬁ+--'+G—n_—mwheren= L2,....

Find a simple formula for S, in terms of n.

1 1/ 1 1
We note that un = Fr—5m— =3 (3/: Sl R 1) :
Then

Sp =t + tn_1 + -+ uy + uy
=%(3nl—2_3nl+1)+%(3n1—5’"3n_1——2)+
+3G-7)+5(G-3)
1 1 n
=§(1_3n+1)=3n+1'

COoMMENT: The limiting value of S, as n increases without bound

is 1.
lS3

LetS = a; 4 a; + - -+ + a,_; + a, be a geometric series with
common ratio 1,1 # 0, r # 1. Let T = b; + by + -+ 4+ ba_y
be the series such that b; is the arithmetic mean (average) of a;
and a4y, ) = 1,2,3,...,n. Express T in terms of a,, a,, and r.

As defined in the problem, b; = %(al + ay), by = % (a2 + a3),
and so on.

Since ay, a3, ag, . . . is a geometric sequence with common ratio r,
as = ayr, a3 = a;r? and so on.
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17-27

Therefore, b, = %al(l +r), by= %alr(l +r), by =

%alrz(l +r),..., b = %alr"_"’(l + r). Consequently, T =
1+ e 1 1 — -t
) @ + r+ -+ 3 = (A @ ==

14r

(1 4 r)ax — a,)
20 —r)

(See Appendix VIL.) T = 21 —r)

since a, = a;r* .

(a1 — airr”™ ') =

The sum of a number and its reciprocal is 1. Find the sum of the
n-th power of the number and the n-th power of the reciprocal.

METHOD I: We have

x—{—)—l‘:l
2
X2 44— x+§) —2=1-2=—1

e (e (e 2) - () = -1 -
it n=(+H)(+5)-2=(n-n-2 i
ke (D) ) - (4 ) - o
L= (P L)+ E) - 2= (-2 ——21:21

It will be seen shortly that it was not necessary to develop

the values for n = 5 and n = 3 and even for n = 6.
We now show by mathematical induction (see Appendix VII)

that x" 4 - = 2 for all n of the form 6k, k = 0, 1,2, ....
Fork=0wehavex°+$=l+l=2. For k = 1 we have
x% + % = 2, as shown above.

. 1 . .
Assume that x% 4+ — = 2, for an arbitrary integer value of
T Yy 8

] 1 1 ; 1
k Z l. Then X( k+1) + ;G-(k_;l—) = (X(’k + W)(Xb + F) —
(x50 4 —25) = 2:2 = 2 = 2, since x* + 5 = 2and

X061 x6k

1

xS

x0*=D = 2 by assumption and x°® + )% = 2 by veri-

fication.
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For 6k 4 1 and 6k + 5, we may use the single form 6k + 1
since5=6—landx+i= x‘l-i-L_l.Sincex‘”‘il +
1 1 1
XOkEL (Xsk + x°")( *1 4 F) - ( Okl 4 xoux)’we have
1
2 (3% + ) = (3% + o) (6% + ) = @(). There-
fore, x%+1 4 XOLI = 1.

For 6k + 2 and 6k + 4 we use the single form 6k =+ 2,
because 6k + 4 = 6(k + 1) — 6 + 4 = 6k — 2. Since x%*2 4

xol,‘ﬂ = (x“" + ﬁ)(x“ + ﬁ) - ( bkt2 4 6,‘ﬂ) it follows
that 2 (x0%%2 4 xem) (x* + ) (37 + ) = 2=Dyso
that x%+2 4 1 = 1.

In a similar manner, we have x%*3 oz = —2

In summary, x" + ; = 2 when n = 6k
1 when n = 6k & 1
—1 when n = 6k £ 2
—2 when n = 6k & 3.

. 1 .
METHOD Ii: Since x + S = 1, x% — x 4+ 1 = 0, with roots
14+i/3 1 1—-iv3 1

n=—p—=g,andrn="—"=—"
Consider the equation x3 — 1 = 0, with roots 1, w, w?, where
Si+i3 1 s —1-i3 1
2 T ow2o - 2 T ow
Since w® =1, w¥* =1,and 1 + w+ w? = 0, and

n=,= w2, an rp= = —w.
Therefore,x+;=—w2—w= ,
1
x2+;;=w4+w2=w+w2=—l,
1
3 - = 6 3 _ =
x+x3- w wl=—1—1= -2,
1
x4+;—w8+w‘—w2+w=—l,
1
X+ = —wl e w = —w—w?=1,
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x6+$=w‘2+w6=1+1=2.

Hence,x“"+ﬁ=w”"+w6"=1+l=2,

(ik 1 2 1
4 2 1 2
5 3

. . 1
METHOD m: Using trigonometry, we have x 4 3= 1, x2—x+

1 i3 .. 1 — i3
1=0r = +2'\/ = ¢0s 60° + isin60° r, = —2'\/—— =
.. 1 1
cos60°—zsm60,r1= , Py = —-
re’ r

Therefore, x + - = (cos 60° + i sin 60°) + (cos 60° — i sin 60°)

Since (cos 60° =+ isin 60°)" = cos 60n° =+ isin 60n° (De Moivre
Theorem), we conclude as follows.

x? + = = (cos 120° + isin 120°) + (cos 120° — isin 120°) =

x3 + L (cos 180° + isin 180°) + (cos 180° — isin 180°) =
-140—-1—-0= -2

x4+;1—4 (cos 240° + isin 240°) + (cos 240° — isin 240°) =
1 W3 1 i3
—37 7 "3tz =1
x5+xis = (cos 300° + #sin 300°) + (cos 300° — isin 300°) =
%_l\/3+ +l\/_3_1

x® + ﬁ = (cos 360° + i sin 360°) 4 (cos 360° — isin 360°) =

1+404+1—-0=2
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x% ﬁ = (cos 360k° 4 isin 360k°) +
(cos 360k° — isin 360k°) =
140+4+1—0=2,and so on.

17-28 Alpha travels uniformly 20 miles a day. Beta, starting from the
same point three days later to overtake Alpha, travels at a uniform
rate of 15 miles the first day, at a uniform rate of 19 miles the
second day, and so forth in arithmetie progression. If n represents
the number of days Alpha has traveled when Beta overtakes him,
Jfind n (not necessarily an integer).

Using a routine procedure, we may write

2001 43) = 154 19 4 -+ + [15 + (n — 1)4]
= 3nl30 + (n — 4]

(See Appendix VIL.) Then 212 — Tn — 60 = 0 = (2n — 15) X
(n + 4). Therefore, n = 7 and n + 3 = 10, -

Checking, we find Alpha’s distance is 210 miles and Beta’s
distance is 210— miles. What i |s wrong?

We mlsused the formula 3 n[2a 4+ (n — 1)d]; the formula is

valid only for n a positive mteger, as proved by mathematical
induction. (See Appendix VII.)

After 10 days Alpha has traveled 200 miles while Beta has
traveled 189 miles. Sometime during the eleventh day Alpha and
Beta meet. Let x be the number of hours on the eleventh day

when the meeting occurs. Then —=-43 =11 + 5 (20), 23x =
11

11-24, x = Th 24. Hence, n = 102—3 days. \

CHECK: In 10;—; days Alpha has traveled 200 + 339 miles while

Beta has traveled 189 + i-43 = 189 + 11 + 2 = 200 +

2(—)mls
23 Mile

Let us view the problem geometrically (Fig. $17-28). Alpha's
distance is represented by the area of the series of rectangles
60 + 7 - 20 + 20r. Beta’s distance is represented by the area of
the rectangles 15 + 19 + 23 + - -+ 4 39 4 43¢
Below RS (see diagram) the excess of the Alpha area over the
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dis’tanc'es
234
19
1 11 1P
g ' s
2 | ]
60 15 19 | 26 | 20 | 20 | 20 | 20 [eor
10
t |
1 2 3 | a 5 6 7 | 8 9 | 10 |days
$17-28

Beta area is 60 + 5 4+ 1. Above RS the excess of the Beta area
over the Alpha areais3 + 7 4+ 11 4+ 15 4 19 4 23¢.

11
66—55+23tt—23

17-29 Find a closed-form expression for Sn, where S, = 1-2 4+ 2-2% +
3:23 4 -+ 4 n-2" that is, find a simple formula for S.

Se=1242-2243-224---+(n—-D2""14pn-2»

28, =1:22 42284+ 4+ (m—22""1+ (n— 1)2"
+n.2n+l

By subtraction, S, = n-2"t! — 2422423 4 -+ 427

—nett JEE =D g gt

1
(See Appendix VIL)
ILLUSTRATION: For n =4, Sy =2+3-25=98 =24 8 +
24 + 64.

17-30 Show that z—<2wher §é=§;+%+---+%+----

r r

-

1 1
First we show that Z r( Pl = 1, and that 22 o —D = 1.
. 1
Since ——— p + D=7 + —— 1 (see Problem 17-23),
2 11
gr(r+1) (1 2) ( ) (S_Z)—""':l'
Since - _L

r(ir — )—r—l r

E:: W= 1) G'%)Jf(%—%)“L(%“%)‘*'”:l-
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1

Since r(r— 1)< r2<r@r+1),

o r(r+1)< <w-n’
Therefore,
2 1 = 1

,Z=:lr(r+1)<,§r2 andE <Zr(r—1)

N
l+r§2;=r§1’_z 1+Z’("1)
@ ® 1
'glr(r+1)<r§lﬁ<l+zr(r—l)
Thus, 1< ¥ <5 <14 1=2

17-31 Express S, in terms of n, where S, = 1-11 +2-2! 4+ 3-3!
4+ -+ 4n-nl.
METHODI: S, = 1-I! +2-2' 4+ -+ F+n-nt = 1-1! +
24 Fn-nl 4+ n —n
But n-ntl+n=@®+D. -.S,=1-1'4+2-20 +---+
mn—Dn—-D —n + (n+ DL
But (n—Dn—1) —nl=—-@n-—-1 =1-1 4+
2~2!+---+(n—2)(n—2)'—(n—l)'+(n+1)'
Continue in this manner to obtain S, = 1-1! 4 2-2! — 3! 4
(n+ D
Therefore, S, = (n + 1)! — 1.

METHOD II: Using mathematical induction, we have
S;=1-'=1=2—1landS,=1-1!4+2:-20=5=31—1.

Assume that S = (k + 1)! — 1;then (k + D(k + D! + Sk =
Sip1 = (k+ D — 1+ (k + Ik + D).
Therefore, Sy 1 =k + DIk+2)— 1=Kk +2)! — 1.
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18

18-1

Logarithms: A Power Play

Find the real values of x such that x logs 3 = logy¢ 3.

log:o 3
log: 3 °

Since xlogs3 = log;p3, x = Let log, 3 = a, then
2¢ =3 ().

Taking logarithms of both sides of (I) to the base 10, we have
alog;2 = logo3.

alog,o 2
a

Therefore, x = = log,, 2. Hence, x = .3010.

Challenge Find the real values of y such that y log1o 3 = log, 3.

18-2

18-3

18-4

METHOD I: (Quickie Solution) Since y is the reciprocal of
1

XY= 3010
METHOD 1I: (Formal Solution) Follow the pattern used in
Problem 18-1.

Find the real values of x for which (a) F is real (b) F is positive,

where F = Iogag—%f,a>0,a7é 1.

(a) F is real when 0 < 2x3—l— % so that either 2x + 4> 0 and

3x > 0or2x + 4 < 0and 3x < 0. Therefore, F is real for x in
the union of the sets x > 0 and x < —2.

(b) Fis positive when 1 < 2x3;§- 4
F is not real for —2 < x < 0, F is positive only for the set

0< x< 4.

so that x < 4. However, since

Iff is a function of x only and g is a function of y only, determine
and g such that logf + logg = log(1 + z) where z = x +
Xy +y.

log(1 +2) =log(l +x+ xy + »)

= log (1 + x)(1 + y)) = logf + logg = log fg
Sf=l4xandg=1+4y.

If (ax)?® = (bx)™??, a, b positive, a # b,a %« 1, b = 1, and the
logarithmic base is the same throughout, express x in terms of a
and b.
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Taking logarithms of both sides of the equation to the same base,

log alog ax = log b log bx
log a(log a + log x) = log b(log b 4 log x)
(log @)® + log a log x = (log b)® + log b log x
log x(loga — log b) = (logb)® — (log a)®
= (log b + log a)(logb — loga)
logx = —(logb + loga)
—log ab
= log (ab)™!
Therefore, x = (ab)~ 1.

. ]_ loga " _]_ logb l loga o 1 Iogb-
VERIFICATION: (a ab) = (b s or ( b) = (‘—1)
Let log. a = usothata = c¥, and let log, b = v so that b = .
1\logca 1\u 1 1\ log:b 1\? 1 .
(z) = (;) = o and (;) = (z) = o With -
versible steps, or, taking logarithms of both sides of the tested
. 1\loga , /1\logd ?
equality (5) = (‘—1) , we have loga(logl — logb) £

log b(log 1 — loga). Since log1l = 0, we have —logalogh =
—log a log b with reversible steps.

. . 1 1 1
Find a simple formula for S, = fog2 N + Top N 4+ el
N> 1

Since logab=@, then S, = logy2 4+ logy3 4 --- +

logny 25 = logn 25!
1 1 1

Challenge f'"irfda szm{)le for;nula {or Th = JogaN ~ loga N + Joge N
~ logas NG 7
T, = logy2 — logy3 + logy4 — logn 5 + + -+ — logy 25
= logy2-4:6- -+ 24— logy3-5-7-+---25
=logn2-4-6 24 —
1 (B-5-7-+---25(2-4-6-----24)
ogn 2.4-6-----24
12 25!
= logny 2 '12!—-10g1v§1—;T2,
(212.121)2

= logy =5
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19 Combinations and Probability:
Choices and Chances

19-1 Suppose that a boy remembers all but the last digit of his friend's
telephone number. He decides to choose the last digit at random in
an attempt to reach him. If he has only two dimes in his pocket
(the price of a call is 10¢), find the probability that he dials the
right number before running out of money.

The probability of dialing correctly the first time is %)- The

probability of failing on the first attempt and succeeding on the

second attempt is —--- = -+ The required probability is,

1 1 2 1
therefore, — 10 + B=-10°-3
19-2 In a certain town there are 10,000 bicycles, each of which is assigned
a license number from 1 to 10,000. No two bicycles have the same
number. Find the probability that the number on the first bicycle
one encounters will not have any 8's among its digits.

An 8 can occur in the unit’s place, the ten’s place, the hundred’s
place, and the thousand’s place, each with a probability of .1, and
so the probability of a digit other than 8 in any one of these
positions is .9. The probability that a digit other than 8 occurs in
all four positions is (.9)* = .6561, and this is the probability
that there will be no 8’s in the license number.

19-3 Suppose Flash and Streak are equally strong Ping-pong players.
Is it more probable that Flash will beat Streak in 3 games out of
4, or in 5 games out of 8?7

For 3 games out of 4, the probability is (4)(2) (2) = 16 % )
where ( ) means 3‘,‘1, and, in general, ( k) meansWn"_—)! 2 k<n

For 5 games out of 8, the probability is (5)(%)5(%)3 =33

Therefore, the more probable is 3 games out of 4.

19-4 Show that in a group of seven people it is impossible for each
person to know reciprocally only three other persons.
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The number of groupings of 3 elements from 7 elements is
!

(;) = % = 35. Since, however, in this case the relation is

reciprocal, only half as many groupings are required. But

% 35) = 17% groups is an obvious impossibility.

At the conclusion of a party, a total of 28 handshakes was exchanged.
Assuming that each guest was equally polite toward all the others,
that is, each guest shook hands with each of the others, find the
number of guests, n, at the party.

Represent the number of guests by n. Then (2) 28; that is,

M=l 28, —n—56=0,(—8)n+T)=0;n=8
If we designate the guests as A, B, C, D, E, F, G, H, the 28
handshakes are AB, AC, AD, AE, AF, AG, AH; BC, BD, BE,
BF, BG, BH; CD, CE, CF, CG, CH; DE, DF, DG, DH; EF,
EG, EH; FG, FH; GH. Note that each letter appears 7 times in
this list, corresponding to the seven handshakes made by that

guest.

A section of a city is laid out in square blocks. In one direction the
streets are E1, E2, ..., ET, and perpendicular to these are the
streets N1, N2, ..., N6. Find the number of paths, each 11 blocks
long, in going from the corner of E1 and N1 to the corner of ET
and N6.

Going from A to B (see Fig. S19-6), one can choose six (7 — 1)
“east” streets and five (6 — 1) “north” streets. At each inter-



224

19-7

19-8

SOLUTIONS

section there is a choice of traveling along an east street or along
a north street (except at the eastern boundary and the northern
boundary).

Now we consider the trip composed of 11 blocks. By letting e
represent an east block and n represent a north block, we can
describe some possible paths as: e, e, e, n, n, e, n, e, n, n, e; or
e,n,e,nenenene,oreeeeeennnnn,oree,n,
n,e, e, nn,e,e,n;etc. .. We seek the number of different paths;
that is the number of different arrangements of the e’s and »’s.

In all, then there are ( )or( )chonces Since ( ) 61!15!!

and (“) 5,6', these, of course, are equal. Therefore, the
number of paths is (161) = 462.

COMMENT: In general, for m east streets and # north streets, the
number of paths is ('"— Vo — ') - ('"— 14+n— 1) _

m—1 n—1
(m—1+n—l)!.
(m — Din — 1)

A person, starting with 64 cents, makes 6 bets, winning three times
and losing three times. The wins and losses come in random order,
and each wager is for half the money remaining at the time the
wager is made. If the chance for a win equals the chance for a loss,
find the final result.

After each win, the amount at the time of the bet, 4;, becomes
A,, and after each loss, the amount at the time of the bet, 4;,

becomes 3 A After three wins and three losses, in any order,

the amozl;nt left is (; Ai,)(; A,—2>(; A‘S)(E Aj, ( Aj, ( AJa) )

that is, -, 4 where 4 is the original amount, since one of 4, 45,

A, A, A o Ajy is A
Consequently, if A = 64 (cents), there is a loss of 64 — 27 =
37 (cents).

A committee of t people, planning a meeting, devise a method of
telephoning s people each and asking each of these to telephone
t new people. The method devised is such that no person is called
more than once. Find the number of people, N, who are aware of
the meeting.
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We start with r people. The first set of telephone calls adds rs
people. The second set of calls adds srt people. (See Fig. $19-8.)
Therefore, N = r + rs + rst = r(1 4 s + s1).

ILLUSTRATION: Ifr = 4,5 =3,t =2, N =4(1 4+ 3 + 6) = 40,
with similar trees for ry, r3, r4. The separate branches total
4(1 X 4), 12(3 X 4), 24(6 X 4), in all, 4 4 12 4 24 = 40.

=(1+3+6)=10

6 S19-8

Assume there are six line segments, three forming the sides of an
equilateral triangle and the other three joining the vertices of the
triangle to the center of the inscribed circle. It is required that the
six segments be colored so that any two with a common point must
have different colors. You may use any or all of 4 colors available.
Find the number of different ways to do this.

cAse I: Three colors are used. (See Fig. $19-9.) We can choose

the three colors in (g) = 3?—1!, = 4 (ways). Designate the colors

as Ch C2, C3, C4. One pOSSlblllty is 4C], 5C2, 6C3, 2C1, 1C2,
3C3. Any permutation of these subscripts will yield the same
pattern.

#3
§19-9

CASE I1: Four colors are used. We can choose 3 out of the 4
colors in 4 ways for segments 1, 2, 3, and the fourth color for
either of the segments 4, 5, or 6. The colors of the remaining two
segments are then determined. That is, there is only one way to
assign the colors to the remaining two segments. Hence, when
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four colors are used, the six segments may be coloredin4 -3 = 12
ways. The total number of different colorings is, therefore,
4 +4=238.

19-10 A set of six points is such that each point is joined by either a blue
string or a red string to each of the other five. Show that there
exists at least one triangle completely blue or completely red.

We may consider the six given points as the vertices of a six-sided

polygon with nine diagonals since the number of diagonals of an

nin — 3)
2

as follows: there are 6 points to be joined by straight line seg-

n-sided polygon is d = . Alternatively, we may reason

t
ments, and this can be done in (g) = i%' = 15 ways; of the

15 segments, 6 are sides and 9 are diagonals. (See Fig. $19-10.)

Py $19-10

Each triangle consists of either 2 sides and 1 diagonal, or
1 side and 2 diagonals, or 0 sides and 3 diagonals.

When there are more than 8 red or more than 8 blue there will be
at least one single color triangle.

The other possibilities in tabular form are as follows.

Red Blue Result

(1) 6s5,2d O0s,7d at least 1 blue triangle with 3 diagonals
(2) 5s5,3d ls,6d at least 1 blue triangle with 3 diagonals
(3) 4s,4d 2s,5d at least | blue triangle with 3 diagonals
(4) 3s,5d 3s,4d at least 1 blue triangle with 3 diagonals
(5) 2s,6d 4s,3d at least 1 blue triangle with 3 diagonals
6) 1s,7d 5s,2d at least 1 red triangle with 3 diagonals

(7) 05,84 6s,1d at least 1 red triangle with 3 diagonals



Combinations and Probability: Choices and Chances 227

Explanation of (1). If red strings are used for the 6 sides and 2 of
the diagonals, and blue strings are used for the remaining 7
diagonals, then there is at least 1 blue triangle all of whose sides
are diagonals. Similar interpretations are to be given to the other
six cases.

19-11 Each face of a cube is to be painted a different color, and six colors
of paint are available. If two colorings are considered the same
when one can be obtained from the other by rotating the cube, find
the number of different ways the cube can be painted. [If the center
of the cube is at the origin (0, 0, 0) the rotations are about the
x-axis, or the y-axis, or the z-axis through multiples of 90°.]

We can start with any one of the faces, say the top, and for it,
we have a choice of 6 colors. We can then paint any one of the
four side faces, say the front, and for it, there is a choice of 5
colors. This makes 6 -5 = 30 different ways the cube can be
painted.

Number the faces as follows: top #1, bottom #2, front #3,
rear #5, right #4, left #6. If, instead of painting #1 and #3, we
chose #1 and #4, the result would not constitute a different
pattern since a 90° turn brings #4 into position #3. The same is
true for faces #5 and #6. If, instead of the top, we choose the
bottom, the pattern is not different since two 90° turns bring the
bottom face into the top position. All other changes may be
analyzed in a similar manner.

19-12 An 8 X 8 checkerboard is placed with its corners at (0, 0), (8, 0),
(0, 8), and (8, 8). Find the number of distinguishable non-square
rectangles, with corners at points with integer coordinates, that
can be counted on the checkerboard.

It is just as easy (except for an actual count) to solve the general
case of the n X n checkerboard.
2
The total number of rectangles is S = (% n(n 4+ 1)) since,
for each row and each column, there are rectangles 1 X 1,1 X 2,

1 X3,...,1 X n,a total of%n(n + 1) for each row and each
column.
The total number of squares Sy = 12+ 224 -+ +n? =

én(n 4+ 1)(2n 4+ 1) (see Appendix VII), since there are n?
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squareseach 1 X 1, (n — 1)%squareseach2 X 2, ...,22 squares
each (n — 1) X (n — 1), and 1% square n X n.
Therefore, the number of non-square rectangles is

1 2 1
S3= 8 — Sy = [3n0 + D] — gnln + D@n + 1)

35 (1 — D) + )G + 2)

Forn = 8,Ss=]i2-7-8-9°26= 1092.

19-13 A4 group of 11 scientists are working on a secret project, the

materials of which are kept in a safe. In order to permit the opening
of the safe only when a majority of the group is present, the safe is
provided with a number of different locks, and each scientist is
given the keys to certain locks. Find the number of locks, ny,
required, and the number of keys, ns, each scientist must have.

The number of six-groupings of 11 items is (161). Therefore,
(161 ) = 462 locks are needed.
For any one scientist, his 5 companions can be chosen (15? )
ways. Therefore, each scientist needs (150) = 252 keys.

Following is an illustration with smaller numbers, say 4
scientists with 3 present at any one time. Then (‘3‘) = 4 locks are
needed. For any one scientist, his companions can be chosen in
(f) = 2 ways so that each scientist needs 2 keys. If we designate
the scientists as Sy, Ss, S3, and Sy, then S; can be provided with
keys to locks 1 and 2, S, with keys to locks 1 and 3, S3, with
keys to locks 2 and 4, and S, with keys to locks 3 and 4.

All four locks can be opened with S|, S,, and S present, with
S1, S5, and Sy present, with S;, S3, and S; present, and with Sy,
S3, and S, present.
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20 An Algebraic Potpourri

If we define (2n + 1)! to mean the product (1)(2)(3)--- 2n + 1)
and (2n 4+ D) to mean the product (1)(3)(S) ---(2n + 1),
express (2n + 1) in terms of (2n 4 1)!.

@1+ 1 = HEE) -+~ 2n + 1) = PO D
Since (2)(4)(6) - + - (2n) = 2(1)2(2)3(2) - - : n(2), it follows that
@@ - - Q) = 2" [(DHDA) - -~ ()] = 2" - nl.

Therefore, 2n + !t = 2+ 1

27 - n!

Ifa, b, c are three consecutive odd integers such thata < b < c,
find the value of a® — 2b2% + c2.

METHOD I: Sinceb=a'2"c,

2 2 2 _ 2 _ ~fa+c)\? 2 _ le—a?

a“* =264+ c*=a ‘.(2)+c—2
2

Butc—a=4(Why?),.'.a2—2b2+c2=47=8,

METHOD Ii: ¢ — @ = 4and ¢ + a = 2b,

c? — 2ac 4+ a? = 16, and c2 + 2ac + a% = 4b2.
By addition, 2(a? + %) = 4b% 4 16,

a? 4+ ¢? = 2b% + 8, and a% — 2b% 4- ¢c2 = 8.

At the endpoints A, B of a fixed segment of length L, lines are
drawn meeting in C and making angles a, 2a, respectively, with the
given segment. Let D be the foot of altitude CD and let x represent
the length of AD. Find the limiting value of x as « decreases
towards zero, that is, find lim x.

a—0

2tana 2L
xtana = (L — x)tan 2a = (L—x)m..x= I - tan’a

. 2
Asa— 0, tanx—0 ".limx = = L.
a—0 3

Find the set of integers n > 1 for which /n — 1 ++/n + 1 is
rational.

If /n — 1 is rational, let n — 1 = k2?; then n + 1 = k2 + 2.
But k2 + 2 cannot be the square of an integer. (Why?) Similarly,
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if we assume that n + 1 = k2%, we find that v/#n — 1 is not
rational.
Therefore, the required set is the empty set.

Challenge 1

Challenge 2

Solve the problem for /n — k + v/n + k where k is an
integer such that 2 < k < 8.

ANSWER: k=4, n =5,k =6,n= 10k = 8, n =17
For what positive integer values of n is /4n — 1 rational ?
ANSWER: None. (See proof below.)

PROOF: Suppose v/4n — 1 is rational. We may express
\V/4n — 1 as the fraction g , in lowest terms, with p and
g positive integers. Thendn — 1 = g;and 4n — 1)q% = p2.

If g is even then g% is even. (See Lemma below.)
Then p? is even so p is even. (See Lemma below.) Since

§ is in lowest terms this is impossible.

If ¢ is odd then g2 is odd. Since 4n — 1 is odd, p? is
odd and, p is odd. Let p =224 1 and ¢ = 2b 4 1.
Then (4n — 1)(4b%> +4b+ 1) =4a®>+4a+ 1, or
4n(4b% + 4b + 1) — 4b% — 4b — 1 = 4a® + 4a + 1.
When the left side of this equation is divided by 4, the
remainder is —1. When the right side is divided by 4,
the remainder is +1. Since this is a contradiction,

the assumption that \/4n — 1| = 5 is untenable. There-

fore, v/4n — 1 is irrational for all positive integer values
of n.

LEMMA: If ¢ is even, that is g = 2r, then g2 is even.
Since ¢ = 2r, g2 = 4r% = 2(2r?), an even number.

If g2 is even, that is g2 = 2s, then q is even. Suppose ¢
is odd, thatisq = 2t + 1. Then g2 = 42 + 4t + 1 =
2212 4 2f) + 1. Therefore, 2s = 2(21% + 2f) + 1. The
left side of this equation is even while the right side is
odd. This is an impossibility. The assumption that g is
odd is untenable. Therefore, g is even.

20-5 The angles of a triangle ABC are such that sin B + sin C = 2 sin A.
Find the value of tan g tan % .
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. . . B4+C B—C
sin B 4 sin C = 2sin -; cos —

2sin A = 2sin [180° — (B + C)]

= 2sin(B+ C) = 4sin§i~ccos3+c

2 2

B-C_ , < B*C
cos —— = 2¢0s —,

B osC 4 sin Zsin € = 2.cos B oos € — 2sin & cos €
cos 5 €os 5 + sin 5 sin 5 = 2.cos 5 cos 3 sin 7 cos >
. B. C B C B C
3smism5=cosfcosi,3tan5tan3=

) B, C 1
..tanztanz—3

Tx3 —x2 —x—1, . .
20-6 Decompose F = a1 N the sum of fractions with

constant numeraltors.

Divisors of the denominator x3(x — 1) are x3, x2, x, and x — 1.
Tx3 —x2 —x—1 A B C D .
Letp=%=—+-—+—+ be an iden-

x3 x4 x x —1

tity in x.

Then 7x3 — x2 — x — 1 = A(x — 1) + Bx(x — 1) +

Cx%(x — 1) + Dx? holds for all x.

Letx = 0;then —1 = —A4, 4 = 1.

Let x = 1; then D = 4.

Let x = —1;then — 8= —24+2B—-—2C—4,and B— C =
—1.

Let x = 2;then49 =14 2B+ 4C + 32,and B 4+ 2C = 8.

4
x —1

1 2 3
Thus,B=2andC=3.F=;+;+;+

20-7 On a transcontinental airliner there are 9 boys, 5 American children,
9 men, 7 foreign boys, 14 Americans, 6 American males, and 7
foreign females. Find the number of people on the airliner.

The table shown is constructed as follows:

(1) Enter 7 at the intersection of row B and Column F.
(2) Enter 2 at the intersection of row B and Column A.
(3) Enter 3 at the intersection of row G and Column A.
(4) Enter 4 at the intersection of row M and Column A4.

(5) Enter § at the intersection of row W and Column 4.
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(6) Enter 5 at the intersection of row M and Column F.
(7) Enter X at the intersection of row G and Column F.
(8) Enter 7 — X at the intersection of row W and Column F.

A (American) F (Foreign)

Children B (boys) 2 7
G (girls) 3 X

Adults M (men) 4 5
W (women) 5 7-X

14 19

The total is 14 4 19 = 33.
NOTE: The number of foreign girls is not determined except to say
that it can vary from zero to seven.

20-8 Ifa and b are positive integers and b is not the square of an integer,
find the relation between a and b so that the sum of a + /b and
its reciprocal is integral.

Leta+\/5+a+1\/5=m;thenma+m\/1—)= @+b+0D+

2a+/b.
S.mvVb = 2a\/b so that m = 2a, and ma = a®> + b + 1.
22 =ma=a’4+b+1..a°=>b+1

Challenge Solve the problem so that the sum is rational but not integral.

Let S = a+\/5+ﬁ/—,;=a+\/5+a+1\/-b'2_:;§
a® —ab + a + a®>\/b — b\/b — /b
at — b '

For S to be rational the numerator must be an integer,
so that a2 — b — 1 = 0; that is, a2 = b + 1. But we
have already established that when a2 = b 4+ 1, S is an
integer. Therefore, the Challenge has no solution.

20-9 Find the simplest form for R = V1I+vV=3+V1-v=3

Let vVa + vV—=b = /1 4+ /=3, witha > 0, b > 0. Then
a—b+2ivab =14 in/3wherei=+—1.S0a—b=1and
2v/ab = /3. Squaring each of the last two equations, we have
a® — 2ab + b% =1 (1) and 4ab = 3 (1).
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By addition of (1) and (IT) we have a% + 2ab 4 b% = 4, so that
a + b = 2. (Why is the value —2 rejected?)
We now solve the pair of equationsa — b= landa+ b = 2

to get a = ;andb = %,and, hence, /1 + /-3 = \/g +

1

2

In a similar manner we obtain 4/1 — /=3 = \/ \/— %
Therefore, R = V1 4+ v =34+ V1 — = _\/+\/ %_|_

NENEIN A

20-10 Observe that the set {1, 2, 3, 4} can be partitioned into subsets
T, {4, 1} and T, {3, 2} so that the subsets have no element in
common, and the sum of the elements in T, equals the sum of the
elements in Ty. This cannot be done for the set {1, 2, 3, 4, 5} or
the set {1, 2,3, 4,5, 6). For what values of n can a subset of the
natural numbers S, = {1, 2, 3, ..., n} be so partitioned?

The sum of the elements of S,is T, = ;n(n + 1) (see Appendix

VII) In order that T,, be integral, the number - [ n(n + l)]
- n(n + 1) must be integral. Consequently, either # is a multiple

of4 orn 4+ 1is a multiple of 4; that is, eithern = 4korn + 1 =
4k, where k = 1,2,3,....
ILLUSTRATION: When k = 1, n = 4 or 3. The case n = 4 is the
favorable case given in the problem. The case n = 3 is somewhat
trivial, namely, {1, 2, 3} with T, = {1, 2} and T, = {3}.

The two unfavorable illustrations given in the problem are,
respectively, cases of n = 4k + 1 and n = 4k + 2 with k = 1,

20-11 Suppose it is known that the weight of a medallion, X ounces, is
represented by one of the integers 1, 2, 3, . .., N. You have avail-
able a balance and two different weights, each with an integral
number of ounces, represented by W, and Wy. Let S = N + W, +
Wo. Find the value of S for the largest possible value of N that
can be determined with the given conditions.

(For this problem we are indebted to Professor M. I. Aissen,
Fordham University.)
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Suppose W, = 2. If X < 2,then X = 1.If X = 2, then X = 2.
If X > 2, go to the next step.
Suppose Wy, = 6. If X 4+ 2 < 6, then X = 3. If X 4+ 2 = 6,

then X = 4.

If X + 2 > 6, go to the next step.
IfX<6,thenX=5IfX=6X=06.

If X > 6, go to the next step.
IfX<6+4+2thenX=71f X =6+ 2, then
X =8

If X > 6 4+ 2, then X = 9, the largest deter-
minable value. Therefore, N + W, + W, =
9+24+6=17.

20-12 If M is the midpoint of line segment AB, and point P is between
M and B, and point Q is beyond B such that QP? = QA - QB,
show that, with the proper choice of units, the length of MP equals
the smaller root of x2 — 10x + 4 = 0. (A, M, B, P, and Q are
collinear.)

Since x2 — 10x + 4 = 0,
xX2—10x+25=21....56—=x2=73,x=5—-—21
If we let QB = 3 and QA4 = 7 (Fig. $20-12),

then BA = 4, BM = MA = 2. Represent MP by x.
Then QP = (QB+ BM) — MP = (3 4+ 2) — x.

A M x 8 Q

P e o -
L 4 » g \ 4

§20-12

The geometric relation QP2 = QA - QB corresponds to the
algebraic relation (5 — x)% = 73

QP = QM — MP corresponds to 5 — x so that MP = x =
5 — 421

20-13 Consider the lattice where R; is the i-th row and C; is the j-th
column, i, j, = 1, 2, 3,..., in which all the entries are natural
numbers. Find the row and column for the entry 1036.

The initial entry in Ry, is %n(n +DH+1,n=01273,...,
and the number of entries is # 4+ 1; R, contains the single entry 1.
(See Fig. $20-13.) We therefore set 1036 = %n(n + 1) + 1 from



An Algebraic Potpourri 235

which we get n2 + n — 2070 = 0. Solving by factoring, we have
(n 4+ 46)(n — 45) = 0 so that n = 45. Hence, the initial entry
Ry is 1036 so that 1036 is at the intersection of row 46 and
column 1.

In the case of an entry such as 1036, we successfully, and
fortunately, found a positive integral root for the equation in-
volving ». Is this the case with an entry such as 2127

¢ C C e e o
R 1
R,| 2 3
R, 4 5 &
o| o o o o
e/ e o o o o
e/l o o o o o o
S20-13

Following the procedure used before, we set 212 =
%n(n + 1) + 1. From this we get n? 4+ n — 422 = 0, and this

equation does not have a positive integral root. However, we do
find that 20 < n < 21. Since the initial entry for R,; is

%(20)(21) + 1 = 211 and the initial entry for R22is%(21)(22) +

1 = 232, we see that 212 is at the intersection of row 21 and
column 3.

20-14 Express P(c) = c® + 10c* + 25c2 as a polynomial of least
positive degree when c is a root of x*® + 3x2 4 4 = 0.

METHOD I: Since ¢ is a root of x% 4+ 3x2 4+ 4 = 0, we have
c® + 3¢%2 4+ 4 = 0 (I). We multiply (I) successively by c, ¢2, and
c3to obtain ¢* + 3¢% + 4c = 0 (II), ¢® + 3c* + 4¢2 = 0 (11D),
and c® + 3¢® 4 4¢3 = 0(1V). From (I) wehave c® = —3¢? — 4
(V), and from (II) we have c* = —3c¢3 — 4c¢ (VI). Substituting
(V) into (VI), we get ¢* = 9¢% — dc + 12 (VII). From (III) we
get ¢® = —3c* — 4¢? (VIII) so that ¢® = —31¢2 + 12¢ — 36
[after substituting (VII) into (VIID)]. Finally, by similar opera-
tions, we get c® = —3¢® — 4¢® = 105¢2 — 36¢c + 124 (IX).

The sum of (IX) and 10 times (VII) and 25¢2 is, therefore,
c® + 10c* 4+ 25¢% = 220c? — 76¢ + 244.
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METHOD 1I: P(c) = Q(c)(c® + 3¢2 + 4) + R(c) where Q(c) is
the quotient obtained when P(c) is divided by ¢ 4 3¢2 + 4 and
R(c), of degree less than 3, is the remainder. But ¢3 4 3¢2 +
4 = 0. Therefore, P(c) = R(c), which is found by actual division
to be 220c2 — 76¢ + 244.

20-15 Let S = bo -+ b'xlt";' il ro+ rix 4+ -+ 4 rox® be an

identity in x. Express ry, in terms of the given b’s.

Multiply both sides of the identity by 1 — x.
bo+bix+ -+ bx"=ro+rx+rxz+--+rpx"

—rox — rix% — o — pox™ = pxttl
Fog = bo, ry — rg = b1 so that ry = b() + bl, and so forth.

= bo+ b1+ + by

20-16 Find the numerical value of the infinite product P whose factors

are of the form wheren = 2,3, 4,.

3 + 1 3
S—1l=@m—-1Dm*+n+ DHand
n® 4+ 1= (4 D(@»®— n+ 1) (See Appendix VIL)
P = _1_7 2. 13 3.21 ._(n—l)(nz+n+l)
=33 4.7 513 n+1Dm2-n+1)
n(nz 4+ 3n + 3) (n + D(n? + 5S¢ + 7) .
(n + 2)(n? +n + l) (n 4+ 3)n2 + 3n + 3)

Every factor in the numerator is matched with an equal factor in
the denominator, with the exception of 1 and 2 in the numerator
and 3 in the denominator.

Therefore, P = §

V2
1+ 5v2 + 7v4
METHODI: Let r = 1 + 5v2 + 7v/4.

r— D3 = (5vV2 + 7V4)?
3 —3r2 4 3r — 1 = 250 + 1050v2 + 1470v/4 + 1372
1622 + 210(5v/2 + 7V/4)
1622 + 210(¢» — 1)
1412 + 210r

20-17 Express F = with a rational denominator.
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1413

r3 — 3,2 — 207r = 1413, r? — 3r — 207 = 5
1 r2—3r—207 r(r—3)—207
ro 1413 - 1413

_ U+ 5V2 + WaA(=2 + 5V2 + TV4) — 207

- 1413

_ —23431vV2 + 6vV/4

- 471

Therefore, F = \/72 _ —2V2 4;7311\/1 +12

METHOD I1: In this method we use the identities
m3 — n3 = (m — n)(m? + mn + n%) and
m® 4+ n® = (m + n)(m® — mn + n?). (See Appendix VIL.)

Start with trinomial 1 4+ ax + bx2, with x = v/2. Then
(1 + ax + bx*)(1 — ax) = (1 — abx®) — (@® — b)x? = ¢ — dx?
where ¢ = 1 — abx® and d = a® — b are both rational.

Since ¢ — dx? is still irrational, we apply the method a
second time. (¢ — dx®)(c? + cdx? + d%x%) = ¢® — d%x8, a
rational expression.

In the given problem, a =5, b=7, ¢ = —69, d = 18,
= (—69)?% cdx? = (—69)(18)V4, d®x* = (18)%(4?).
F is rationalized by multiplying the numerator and the de-
nominator by (1 — 5v2)(69% — 69 - 18V4 + 182 - 4%) or,
more simply, by (1 — 5v/2)(232 — 23 - 6V/4 + 62 - 42), where
the second factor was divided by 32 = 9,

With these operations performed correctly, we obtain the
value of F shown in Method I.

Challenge Express F = l—.-!-_\’/\—g_zT\’/_Z with a rational denominator.
This can be done by Method I or by Method II, but also
by a specialized method resulting from the fact that
1 + V2 + V4 is a geometric series.

Since 1 + VI + VA = 921 1,
F=— _ 3. (See Appendix VIL)
o1

20-18 Starting with the line segment from 0 to 1 (including both end-
points), remove the open middle third; that is, points % and g of
the middle third remain. Next remove the open middle thirds of
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1

the two remaining segments ( points 3 remain along with

278
1 2 9°9°9°9
3 and 5) . Then remove the open middle thirds of the four segments

remaining, and so on endlessly. Show that one of the remaining

, .1
points is
. . . . 1 .
In succession, starting with the point -, we have intervals repre-
.1 1 1 1 1
sented by the sums s, of the series 3 — g + 7~ 8l + -+ [

. 1 1 1
that is, s, = 3252 =35> and so forth.

1

“lims, = 3 __1
’ .‘n—’w " — —l h 4
- (-3
Expressed in the base 3, the number is % - 51; = (—; + 52; plus
% — 2= g+ Zplus ..., or .020202... (base 3) or .02
(base 3)

COMMENT: The set of points formed from the closed interval
[0, 1] by removing first the middle third of the interval, then the
middle third of each remaining interval, and so on indefinitely,
is known as the Cantor Set, and also the Cantor Discontinuum.
It has unusual and interesting properties.

20-19 Write a formula that can be used to calculate the n-th digit a,
of N = .01001000100001 . . . , where all the digits are either 0 or 1,
and where each succeeding block has one more zero than the
previous block.

The digit “1” appears in positions 2, 5, 9, 14, .... To find a
formula for generating this sequence, we may proceed as follows.
The first differences of successive terms in the sequence are
3,4, 5 ...,thatis, 5—2=3,9—-5=4,14-9=35, ...
and the second differencesare 1, 1, 1, . ...

Since the second differences are constant, we try the formula
Ak® + Bk + C, k=1,2,3,....
When k=1 we have 2= A+ B+ C.
When k = 2 we have 5 = 44 + 2B + C.
When k = 3 we have 9 = 94 4+ 3B+ C.
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» B =

3
2 2
k+2

N

The common solution of this set of equationsis 4 = % s
C = 0. Therefore, the generating function is k,
k=123,....

N

1 whenn = %k"’ +gk,k =1,23,...;
0 otherwise.

Challenge Find a, the n-th digit, of M = .101001000100001 . . ..

METHOD I: Use the method shown above.

Therefore, a, =

METHOD I1: The digit “I” appears in positions 1, 3, 6,
10, ..., but these are the triangular numbers T, T, T,
T4, . ... (See Appendix VIIL.)

1 1
1 h =~k*+-kk=1,273,...;
when n 3 +2

Therefore, a, = .
0 otherwise.
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1-1
1-2
1-3

1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12

1-13
1-14

3 Challenge 1: 4 Challenge 2: 7

See solution.

See solution. Challenge 1: At least one box with 3 or more
letters Challenge 2: At least one box with 3 or more letters
Challenge 3: At least one box with 4 or more letters

Challenge 4: 26

See solution. Challenge 1: See solution. Challenge 2: 4
Challenge 3: 4

192 m.p.h.

n=9 Challenge: n = 17

1:06 p.M.

143 hours Challenge 1: 93 hours Challenge 2: 1:06 AM.

3
54 Challenge 1: 70
120 Challenge: 248 oz.
Plan I yields $200 more. Challenge: For the S-year interval,
earnings are the same.
See solution.
n—1

@L=j4+n—-1 GM=j+ 2 for odd n; M = j +

g—l,orj+;forevenn Challenge 1: @) S=j—n+1
(b)M=j—";l for odd n; M=j—'—2'+1, orj—;for
even n Challenge 2: @) L=j+2(n—1) (b) M=+
n—1 for odd n; M=j+n—2, or j+ n for even n
Challenge 3: Same answers as for Challenge 2 Challenge 4:

., 3n L. 3 . 3




1-15

1-16

1-17

1-18

2-2
2-3
24
2-5
2-6

2.7
2-8
29

2-10

2-11
2-12
2-13
2-14

Answers 241

[x — y| = max(x, ) — min(x, y) Challenge I: Yes Chal-
x+y |Jx—yl
2 2
- - 1

@x=x"—x" @ xl=x"+x" (© xt=3(xl +x

_ 1
@ x~ = 5(Ixl - x)
loro0 Challenge I: (a) 2y — 1 or 2[y] (b) —2[y] or 1 — 2y
Challenge2: @Q)F =1 D0 <K F<1 ()l < F< Chal-
lenge3: (@) D =0 (b)) D =0orlor2 (¢)D=0orlor2or3

or 4 Challenge 4: x = 3; Challenge 5: (x + y) = (x) +

() when (x) + () < 1, (x + ) = (x) + (») — 1 when (x) +
=21

enge 2: min(x, y) =

4:211—9l Challenge 1I: 7:54% Challenge 2: 5:1712793
Challenge 3: 8%3 hours

44.25 Challenge 1. —17L Challenge 2: 42.5 Chal-

12 n+3 n+2
lenge 3: (a) 4.2 or (b) 4.3 Challenge 4: (a) | ®) 1

Challenge 5: 1 Challenge 7: 70%

4AM,| Challenge: No change.

No Challenge: No

n =40 Challenge: Set m = —n in order to solve.
L4, 0+d b b

c a+ec ’ a ac

@6 (b4 (©)3 @4 (¢)2 Challenge: (a) 5 (b) 8 (See
solution.)

24 Challenge: 4

18 Challenge 1: 9 Challenge 2: 14

8 possibilities (See solution.) Challenge: 8 possibilities (See
solution.)

k=238 Challenge 1: 25 Challenge 2: 17 Challenge 3:
60 days

Oor4 Challenge: Only 1

Even integers (See solution.)

my =2 my=3mg=1 Challenge 1: See solution.

-7 Challenge 1: 8 Challenge 2: —23
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2-15 1 or —1 Challenge 1: —7 Challenge 2: m® + 1, m® 4 1,
md + 1

2-16 N = 51,051, or 69,069

2-17 No

2-18 24; 93,324

2-19 k=1,2,19 Challenge: k = 3, 8

2-20 r when r is odd, 2r when r is even Challenge 1: 2r when r is
odd, r when r is even Challenge 2: r when r is odd

2-21 \V/n

x+1

3-1 ye = X, Y100 = X, Yso1 = Challenge 1: 2 Chal-

3-2

3-6
3-7

3-8

3-9

3-10
3-11

3-12

lenge 2: 3 Challenge 3: Undefined Challenge 4: Undefined.
@) s152 — 251 — 252+ 4 (b) 25, + 255 — 4,01 2[(s; — 1)+
(s2 — 1)] (¢) 5152 Challenge: N(I) = s* — 45 + 4, N(B) =
4s — 4, N = 5%, where s is the number of lattice points in the
side of the square.

The change in the value of p is 13.5 mm. (decrease). Challenge:
715 mm., 760 mm.

$1.65 Challenge 1: $1.85 Challenge 2: $2.05 Chal-

lenge 3: See solution.

1 Cx= V2
x= ~—3,y=~—1  Challenge I.x—3_\/2-,y—\/§, or

—3v2
x=3+\/_,y=—\/§ Challenge 2: x = 2, y = 1, and
2

x=_§9y=_1
n=12 Challenge:n = 6k — 1, k= 1,2,3,.

1 a+b  ab
33 Challenge: 100 — 100 (1 + %52 + 1002)
x = —_b - Challenge 1: p > m Challenge 2: Fixed over-
P 100 + b

head (expense) Challenge 3: x = Challenge 4:

= f—-{_: Challenge 5: b dollars ,
60%, Challenge 1: 509, Challenge 2: 663 %
nyng = 1:2 Challenge: See solution.
See solution
x =3 (a + b)  Challenge 1: x = 1% Challenge 2: x = %

ChaIIenge 3:x= —~lorl Challenge 4: x = —% or% Chal-

p—m




3-13

3-14

3-15
3-16

4-1
4-2

4-3
4-4
4-5
4-6
4-7

4-8
4-9

4-10

5-1
5-2

Answers 243

lenge 5: x = % Challenge 6: x = 2 or g Challenge 7.
x=20o0r2

Smith and Jones cannot get together. Challenge 1: 65 days
for first reunion

No Challenge 1: (a) No (b) Likely, but there is no certainty.
Challenge 2: One possibility is 1 quarter, 2 nickels; a second
possibility is 1 dime, 2 nickels.

12 ways Challenge: Yes

3 ways

See solution.

0 Challenge 1: 1 Challenge 2: 0, 1, 2 Challenge 3: 1,
2,3

See solution. Challenge 1: 11 Challenge 2: 19

All bases b > 4 Challenge 1: 111 (base 4) Challenge 2: 12
See solution.

9 Challenge 1: Yes, Yes Challenge 2: 495

110.11 (base 2) Challenge I1: 10011.10101 (base 2) Chal-
lenge 2: No (See solution.)

r=29 Challenge: r = 6 or 10

B(.1,0), D(.01,0), E(.02,0) Challenge: C(.2,0), F(.21,0),
G(.22,0)

See solution. Challenge 1: Eighth  Challenge 3: See solution.

The empty set Challenge: The empty set

x = 3, y, any real value except 31; or x, any real value, y = 4
Challenge: y = 1, x, any real number, or x = 3, y any real value
except 3% or %
3—2vV2<x<3+4+2V2 Challenge:b —a =6

x=1 Challenge: x = !

3
a>3,b=2 Challenge: a < 3,b = 2
N=35%+16,k=0,1,2,3,... Challenge 1: N = 35m +
22,m=0,1,23,... Challenge 2: See solution.
20 Challenge 1: p = 65—b ,s=a+ 35—b Challenge 2: p =
rirz
rlrz—l(b)’ =a+rrz—l(b)



5-8
5-9

5-10
5-11

5-12
5-13

5-14

5-15
5-16
5-17
5-18

5-19

5-20

5-21

6-1

6-2

6-3
6-4

6-5

6-6
6-7

6-8

ANSWERS

250
7 seconds
x=12,y=3 Challenge: Yes

11 13 3
{ —7} Challenge 1: { —7} Challenge 2: {—a - 5}
Least possible, 17; largest possible, 19 Challenge 1: Smallest
combination, 6-6-6 Challenge 2: Smallest combination, 6-6-6
Challenge 3: See solution. Challenge 4: See solution.
Questionable answer: 3 item A, 2 item B, 15 item C (See solution.)
8, 16, 3, 48 Challenge 1: 6, 12, 3, 27 Challenge 2: 6, 10,
4, 16, 64
6% miles
200 miles
25 f.p.s.
x =12
113, 223 Challenge: 17, 31, 53
5:20 P.M. Challenge 1: 4:48 p.M. Challenge 2: Change %
to ;—; Challenge 3: The professor is right.
z=kw,y=2z4+w, x = z+z£-, w an integer, k = x1, £2,

. . . (See solution.)
See solution.

21 Challenge 1: 36 Challenge 2: See solution Chal-
lenge 3: f(10) = 55, f(100) = 5050 Challenge 4: n=9
Challenge 5: n = 2

@fm=1-n Gf=n+1 @©f(n)=1-2n
df(n)=n+ % ©f(m)y=n-— % Challenge: f(n) = 2n — 3
5,12, 13 Challenge: 5, 12, 13

4,3;5,3;5,4

[0, %] Challenge: See solution.

20
4n

%(n2 +n+ 2 Challenge I: %(r2 +r+ 24+ k(r+1)
Challenge 2: 3n(n+ 1)  Challenge 3: (ki + )(kz + 1)



6-9

7-1
7-2

7-3

7-4

7-5
7-6
7-7
7-8
7-9
7-10

7-11
7-12
7-13
7-14

8-1

8-2
8-3

84
8-5
8-6
8-7

8-8

8-9
8-10
8-11
8-12
8-13
8-14

Answers 245

Challenge 4: ky + ko + 1, kiko + 2(ky + k2 + 1) Chal-
lenge 5: %(n2 +n—2)
32 Challenge: 24

=0
X2+ 1:'=2
21
37
3k?2 k? .
¢  Challenge I: 5 Challenge 2: See solution.
See solution.
190
See solution. Challenge: See solution.
x=1l,y= =2
n=2andn =3
x=4y=35
x=1LL,y=09 z= —0.5;x=§bz-,y=§—(5),z= -1

L ) 30
X=15V=7% (See solution.)

. .. 1
maximum 17, minimum -5
10 item A, 30 item B, 60 item C

(@2, -2 (b)2 Challenge: (a) none (b) —2
(a) 18 (b) One possibility is Py (0, 5), P2 (2, 7); a second possi-
bility is P1 (325 ), P2 (30 3)-
2 2 2 2
7 Challenge 1: 14 Challenge 2: 3 Challenge 3: 6
3 Challenge: 3
All integral values of x and p  Challenge: Same answer
a+b+c¢c=0 Challenge: The only solution is a = b =
c=0.
(x+ y)(x -2y — 1) Challengel: (x + y + 1)(x — 2y — 3)
36
See solution.
See solution.
No Challenge: Yes
See solution.
17

8-15 f (minimum) occurs when mx = ny; that is, when x:y = n:m.
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9.1 L=11, $S=5 Challenge: The result is not unique, but
L = 24, S = 8 seems most reasonable.
9-2 No solutions in integers Challenge 1: x=12, y=5
9-3 9 buses, 14 cars each with 32 persons Challenge: 15 buses,
21 cars each with 33 persons, 1 car with 23 persons; a second, less
satisfactory, answer is 9 buses, 21 cars each with 21 persons, 1 car
with 11 persons.
9-4 1q, 2d, 2n, 45¢, and 2d, 8n, 40c Challenge: 2d, 8n, 40c
9.5 37 solutions Challenge: 33 solutions
9-6 48 by 60, 40 by 72, 36 by 80
97 a=n(n+ 1), wheren=20,1,2,...,ora=mm— 1)+ 1,
wherem = 1,2,3,...
9-8 20 gallons
9-9 2n — 1 solutions, where n is the number of positive divisors of pZ.
9-10 34 — 9
9-11 See solution.

10-1 10 Challenge: 55

102 fx+ D =f(x—1 Challenge 1: Yes Challenge 2:
I —f(x—-1 Challenge 3: f(x + n) = 1 — f(x — 1) when
n is even, and f(x + n) = f(x — 1) when n is odd.

10-3 (@) ac = 1 and ad + b = 0 (b) See solution. Challenge 2:
ac=1landad — b =0

10-4 Zero Challenge: Zero

10-5 N(max) = kV?2, where k is a positive constant (See solution.)

3
Challenge: N(max) = kV2

_ S Lo 828 — 28183
10-6 S = f. Challenge: T = P

10-7 No such values (See solution.) Challenge 1: m = 3, n =2
Challenge 2: m = 5,n = 2

10-8 x =1or2 Challenge: 0 < x < lorx>2 1< x<2

10-9 Zero Challenge: See solution.

10-10 x = /3 — 1 Challenge 1: —/3 — 1  Challenge 2: \/—5;—1

! L1 1 L1
10-11 3 Challenge 1: 3 Challenge 2: 2 Challenge 3: NG
10-12

a

n-2"~'  Challenge: n-3""1, n-a*~!

10-14 f= x2  Challenge 1: f= (x + 1)  Challenge 2:
S



11-1
11-2

11-3
114
11-§

11-6

11-7
11-8

119
11-10
11-11

11-12
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P>38

x=32,y=127 Challenge 1: x = 32, y = 27

Challenge 2: x = 45,y = 38

No (See solution.)

—l<x<landx>1 Challenge: x > 1

6,6,1), (6,572, (6,4,3), (55,3) Challenge: (1,7, 1),
1,6,2),(1,5,3), (6,6, 3), (6,5,4)

18% years Challenge: 18% or 13§

A=n+1

R, is the set of real numbers, R; is the empty set. Challenge:
Same answers

See solution. Challenge: See solution.

V1ol > V9t

x> 5.76 Challenge: x > 12.005

% = g (See solution.)

11-13 42 = 16  Challenge 1: When a; = a, = a3 = a4

12-1
12-2

12-3
124
12-§

12-6

12-7
12-8

129
12-10
12-11
12-12
12-13
12-14
12-15
12-16

12-17

.1 (base 9) Challenge 1: .111 ... Challenge 2: .14
x= 34 Skord4 + 5k,wherek = 0, £1, +2,...
Challenge 1: x = 4 + 10k or x = —2 + 10k Challenge 2:
x=5417Tkorx= -3+ 17k
8,2,and 4  Challenge: Yes
Only forn = 1 Challenge: Same answer
¥y = (a, b); that is, y is the greatest common divisor of a and b.
Challenge: Yes
ax) =1 —x% b(x) = x2+4; or a(x) = x2 -1, b(x) =
~(x* + 4
k=9
20462046 . . . (base 7)  Challenge 1: 25412541 . ..
Challenge 2: 333
See solution.
See solution.
x € S where § = {0,—2, —1, 3, 6, 14} Challenge: x = 19
\v'n
See solution.
N = 615,384 Challenge: N = 820,512
N = 76 (N = 00 is a trivial solution.)
=6 Challenge: b = 4

Challenge: — —g

wloo
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12-18 An infinite number of solutions, with y = +(x? 4+ 3x + 1) and
x any integer  Challenge: An infinite number of solutions, with
y = +(x% + 5x + 5) and x any integer

12-19 (x2 + 2x + 5)(x% — 8x + 20)  Challenge: (x> — x + 5) X
x2 — 9x — 4)

12-20 (ac + bd)? + (ad — bc)?, (ac + bd)? + (bc — ad)?,
(ac — bd)? + (ad + bc)?, (bd — ac)? + (bc + ad)?

12-21 8 (See solution.) Challenge: None

12-22 N = 640 .. .0 with n zeros, wheren = 0, 1,2, ... Challenge:
N=2960...0

12-23 133 Challenge 1: 57 Challenge 2: See solution

12-24 x = 3a,wherea=0,1,2,...

12-25 A = B + C + mBC, where m is an integer

12-26 See solution.

1227 R =2

12-28 b = 4n + 3, wheren =0, 1, 2, ...

12-29 See solution.

13-1r=3 Challenge: r = ‘-IIP

13-2 a (min) = 361 Challenge 1: C = 237 Challenge 2:
C = 240 — 3k, where k = 1,2,3, ...

13-3 $1.50 Challenge 1: 6000 Challenge 2: $9000
Challenge 3: $2.00

13-4 1:2 Challenge: Same answer
4

13.5 V3

13-6 P is 5 miles east of B.

13-7 s = 12 Challenge: s = 1

13-8 (a)Pl =L,P2=OOI'P1 =0,P2=L(b)P1 =Py, ==

ct c? 2
139 - Challenge: 7
13-10 x equals the arithmetic mean of k; + ko + -+ - + k.
13-11 2c + 1

13-12 See_solution.
113 22

t~

14-1 x =3 Challenge 1: x = 3 Challenge 2: x = 3 or 8

14-2 All real values of h and k except h = k = 0  Challenge:
@hr>k®dh<k

143 b=c=1 Challenge: b= —2, ¢ =1
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b2 m n m n\ 2

4 2= 2247 = (5 +47)

14-5 When p = 20, x = 10 & 4/5; when p = 20, x = —1 (See
solution.)

m—1 -m — 1
14-6 ¢ = 3 , b= 2

14-7 See solution. Challenge: ry + ro + r3 = —b; riro + rors +
rsry = C, rirolfg = ""d, S3 + b32 + CSl + dSo =0
14-8 C = 90 Challenge 1: C = 110 Challenge 2: C = 110

14-9 5 = ;—:,q = %2 + ij Challenge 1: u = v = 1 Challenge 2:
v=u?= l_zij, where i = v/—1

14-10 None (See solution.) Challenge 1: n = 4, m = 6 Chal-
lenge2: n =2, m=3

14-11 2B® — 94BC + 274%D = 0 Challenge: B*D — AC® =0

14-12 See solution.

14-13 See solution.

w

15-1 x1=xQ=%,x3=x4=—

15-2 x, any real number, y = 3x — Sa + 2¢, z = —2x + 3a — ¢,
where 3a+ b —c=0

153 p? =3, x1y = —2:1

1554 a+ b+ c=0

15-5 a:b:c = 3:-2:—1

15-6 No finite solutions Challenge: x = 3,y =1

15-7 x, any non-negative real number, y, any non-negative number,

z=%(b—4x—5y),whereb—4x—5y>0and2b= a+c
15-8 No = 16, Ny = 18, N = 24

-}

16-1 Infinite Challenge 1: None (parallel lines) Challenge 2:
One point (1, 3)

16-2 ¢ Challenge 1: Yes  Challenge 2: Yes

163 (@) f = x + 2with0 < x <3 () f = —3x + 14 with

3<x
16-4 m = 210 Challenge I
_ cibs — c2by aicz — ax,
m=ds arb2 — azb, 3 4162 — azby

Challenge 2: Formula of Challenge 1 inapplicable since a;b; —
agbl =0
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16-5
16-6
16-7

16-8
16-9
16-10

16-11
16-12

16-13
16-14

16-15

17-1
17-2

17-3

17-4

17-5

17-6
177
17-8
17-9
17-10

The non-negative portion of the y-axis Challenge: The non-
positive portion of the y-axis

4X2 —-29=0

a,=2,a; =1 Challenge 1: a3 = 3, ay =§ Challenge 2:
__@2d+2) _(2c +3)2 h d 2 +2

N =38 yad+2° 927 22 yac 3 WRIC A= =573

18 miles Challenge: 3% hours
y=3mx’ x>0  Challenge: y = x(1 + VT F 4m?),

x20
y = x + 3 (See solution.)

X>1 Challenge: X = 1 + /3 or X=1+2‘/§
See solution. Challenge 1: 25 by 18 Challenge 2: L' = 1 W,

[ ]

w'=2L

See solution.

See solution. Challenge 1: See solution. Challenge 2: See
solution.

S:n = 2:1

00 Challenge 1: 02 Challenge 2: 20

_M i _l =1 2

lenge 1. Same formula with f(l) = l f(2) = 1 Challenge 2:
Same formula with /(1) = 3, f(2) -1

(@ D= h(l + r) b T= ﬂ (1 +\/r) Challenge: Dy =

1—r
() 20 3(2)

See solution. Challenge: (a) a,, as, a4, ag, and gs, ay, ag, ays
(b) ay, a, a4, as, ais

d=1 Challenge 1:d = 12 Challenge 2: n = 3,d = 69;
the third term is 141 = 47x.

n®  Challenge: See solution.

Zero Challenge: n =r+s—lorn=r-+s

See solution.

r = 2, a is arbitrary.
d < 10 (degrees) Challenge 1. d < 6 (The value obtained is

s 720
SH. Challenge 2: d < n— 1)



17-11
17-12

17-13

17-14
17-15

17-16

17-17
17-18
17-19

17:20 @) 37(% = 1 + 2)) ®) 310 — 1+ 1) (© 37(r* + 1)

17-21

17-22
17-23

17-24
17-25

17-26
17-27

17-28

17-29 S,

17-30

17-31 S
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r N2

-1+ (0) .

5; thatis,n > 5 Challenge 1: n > 10 for x = 21 > 3 for

x=; Challenge2:nZ4forx=—%,n29forx=

- % n>3forx = — é Challenge 3: See solution.

= T \/5 Challenge: See solution.

75 Challenge: arbitrary

Al > V3 Challenge 1: \/3, /3, V3, ... Challenge 2:
7

2, 3 4’

S = 3n2(n + 1514+ 1)  Challenge: S = n?Qn® — 1)
mn = S(m + n) — S(m) — S(n)

ag = 39

See solution.

—

P=1—-—x,0=1+«x Challenge 1: S=‘—1whenx-—

2 bl
S = 1—85whenx =7  Challnge2:P=1~x,Q=1+x
I= 3—
2n .
S = e Challenge: }1:2 S=2
1
Su =3 ’jr o Challenge I: S, = 5 '; . Challenge 2:
S, = ; + i (See Problem 9-23.)
_ 4+ @ —an)
T 2(1 — )
See solution.

n= 10;—; (days)

=2+ (—1)-2"! Challenge 1: S, 4[3 + @~
3nH] Challenge 2: 5, = S+ (n— 1) 4rH1)

Challenge 3: S, 16 [5+ @n — 15"t

See solution.
=mn+ 1D -1
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181 x = logio2 ~ 3010  Challenge: y = {==—

18-2 (a)x > 0orx < —2()0< x < 4  Challenge: (a) x > 2or
x<0Md)—-4<x<0

183 f=14+x,8=1+y Challenge: f=1—x,g=1—y

18-4 x = (ab)~!

18-5 S, = logy 25! Challenge: T, = logy *—a22
n gN <0: ailenge. 1y ogN 251

! Challenge: % + ‘—11 =1

19-1 5 3
192 (.9)* = .6561 Challenge: 4096
19-3 3 games out of 4 Challenge: 3 games out of 5
19-4 See solution. Challenge: Yes
19-5 n =8  Challengel:n =9  Challenge 2: Impossible
19-6 462 (See solution.)
19-7 37-cent loss
198 N=r+rs+ rst
199 16
19-10 See solution.
19-11 30
19-12 1092 (See solution.)
19-13 n, = 462, n, = 252

201 (20 + D = SED
20-2 8 Challenge 1: No change Challenge 2: No change
20-3 g L Challenge: ‘—31 L

20-4 The empty set Challenge 1: k = 4, n = 5;k = 6, n = 10;
k=8n=17 Challenge 2: None

20-5 3
1,2 .3 4 e_ 1 1, 8

206 F=5+5++7—3 Challenge.F——-x‘,,—-x+x+1
20-7 33

20-8 a?=b+1  Challenge: No solution possible

2099 R=+/6 Challenge 1: /=2  Challenge 2: 2a/¢c,2/—d,

where ¢ = ‘/L*'zb_i‘_f,d= \/"2+ b—a

20-10 n =4dkorn+ 1 = 4k, wherek =1,2,3,...
20-11 S =17

20-12 See solution.
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20-13 Row 46, column 1; row 21, column 2
20-14 P(c) = 220c% — 76c + 244 Challenge: P(c) = 170c? —
76c + 244

20-15 r, = bo+ by + by + - + b, Challenge: 3 (n + D)(n + 2)
20-16 P = 3

—23v/2 + 314 + 12

20-17 F = yon

20-18 See solution.
20-19 g, = 1 when n = %kz +%k, where k=1,2,3,...;a,=0
otherwise  Challenge: a, = 1 when n = %kz + %k, where

Challenge: \/4——1_\’/—3 = V4~ V2

k=1,273,...;a, = 0otherwise
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APPENDIX 1 Terminating Digits

For any natural number n, n° TD n; that is, the terminal digit of n° is
the same as that of » itself.
Proof
(1) Certainly it is true that 1° 1D 1.
(2) Assume that k is the largest value of n for which the theorem is
true; that is, assume that k° 1D k.

Then (k + 1) = k® 4 5k* + 10k® + 10k? + S5k + 1.
Whether & is even or odd, the terminating digit of 10k® 4 10k2 is 0.
Now consider 5k* + 5k = 5k(k® + 1). If k is even, then the terminat-
ing digit of 5k(k® + 1) is zero. If k is odd, then k3 is odd and k% + 1
is even. Therefore, the terminating digit of 5k(k® + 1) is 0, whether
k is even or odd. It follows that the terminating digit of (k 4 1)° is
the same as that of k® + 1. But, by assumption k® Tb k. Therefore,
k+ DSk 4 1.
(3) We now know that, no matter what the value of k, the theorem is
true for the successor of k; that is, the theorem is true for all natural
numbers n, since it is true for k = 1.

It can also be shown that n*”t 1D n, whenm =0, 1,2, ....

APPENDIX N1 Remainder and Factor Theorems

If a polynominal P(x) = x™ + c1x" ' 4+ -+ 4 cpo1x + cn is di-
vided by x — a until no x appears in the remainder, the remainder has
the value P(@) = a" + c,a* ' + - - + c,.

For example, if P(x) = x® — 2x% 4 3 is divided by x — 1, the
remainderis P(1) = 1 — 2 + 3 = 2.
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Proof
P(x) = Q(x)(x — a) + R, by the definition of division; R is a con-
stant. We have, upon substituting a for x, P(a) = 0 + R; that is, the
remainder equals P(a).

If R = 0, the division is exact and x — a is a factor of P(x).
Conversely, if x — a is a factor of P(x), then R = 0, and the division
is exact.

APPENDIX III Maximum Product, Minimum Sum

Let S =a + b, where S is a constant and a and b are positive
. a + b\2 S?

numbers. Let P = agb. Then P(maximum) = ( 2 ) =7

Proof

SinceS=a+bb=S—a..P=a(S—a) = Sa—a’

=S 2 R U S\ 2
=7~ (a —Sa+7)=7-— (a— 2) . The largest value of
S? S S S
P, namely ~ » occurs when g = 3 and when g = 3 then b = 3
2 2
Therefore, P(max) = ST = (a ;_ b) .

Let P = ab where P is a constant and a aﬂd b are _positive numbers.
Let S = a 4+ b. Then S(minimum) = 2vab = 2v/P.

Proof

(Va ~ vb)* >0, ".a+ b > 2v/ab. The equality sign holds only
when va = +/b, and when +a = +/b, then a = b. Therefore,
+ b = 24/P is a minimum when P = a? = b2, that is, when

VP = Vab.

APPENDIX 1V Means

For positive numbers, the harmonic mean (H.M.) < the geometric
mean (G.M.) < the arithmetic mean (A.M.), where

ar”t a7t + - a1\ n ,
H'M"( n ) 1,1 1
_+_+...+__

a a: an

GM. = Vaja, - a,,
a1t+ar+---+an
AM. = "
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Proof
(1) Let g = Vajas - a,; then 1 = {"ﬂﬁ---&', and 1 = 2%
g ¢ g g ¢

an

g But % + % + -+ % > n (see Lemma below). Therefore
Gt tdh s gthatis, GM. < AM.
(2) Using this result, we have Va;%a, - a,* < a” + e -: L

1 @ g 1
When 5 <0, [Vajeas® - a,*]* > [al +a: : + an ]". Take

-1 -1 —1—1
a = —1; then x/"alaz“-anz[a' + g : t+ o ] , so that
HM. < GM.

LEMMA: If the product of n positive numbers equals 1, their sum is not
less than n. The proof by Mathematical Induction follows.
(1) Thetheoremistrueforn = 2. Since (a; — a3)? > 0,a,%2 + a,% >

2a,a;. Therefore, :—i+:—: > 2, since a positive number plus its

. 1 a a
reciprocal > 2. Because aja, = 1,a; = —, and therefore, a—: + a—: =

1 a’
012 0_1222
(2) Assume a; +as + -+ ar > kwhenajas---a, = 1.
casEl: If aj =ap = - =a;,=1, then ay +as+ -+ ar +
ak+1=k+l.

CASE II: Some of the numbers are greater than 1, and some smaller;
say ay; < 1, axq4y > 1. Then bagasz---a; = 1 where b = a1a,41.
Therefore b+as+az+ - -+ a.> k. But a,+as+- -+
g+ a1 =0+art+a;+---F+a)t a1 —b+a 2>2k+
ak+1—b+al=k+l+ak+,—b+al—— 1.

Therefore a; +as+ -+ apy1 2 (K + 1) + apy1 — araiyy +
ag—1l=C+ 1)+ anu(l —a)—01—a)==&+1+
(@x4+1 — D\ — ay).

Since a; < land agyy > 1, (akye1 — D( — ag) > 0.

Therefore a; + as + -+ + ax + axy1 = k + 1 + a positive num-
ber > k + 1.

APPENDIX V Divisibility

Let N = a,a,_1 - ajag be an integer with n 4+ 1 digits, expressed
in base 10. Then divisibility can be determined by the following
theorems:
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(@) 2 divides N if 2 divides a,. (i.e. N is exactly divisible by 2 if A, is

exactly divisible by 2.)

(b) 5 divides N if ag = 0 or ag = 5, because multiples of 5 end either

inSor0.

(©) 3divides Nif 3 divides S where S = a, + a,_; + - -+ + a; + a,.
9 divides N if 9 divides Swhere S = a, + a,_; + -+ + a; + ao.

(d) 7 divides N if 7 divides P where P = (1 -aqg + 3a, + 2a3) —

(1-a3 + 3a4 + 2a5) + (1 - ag + 3a7 + 2ag) — - -~

(e) 11 divides N if 11 divides Q where Q = ag — a; + as — -« + a,.

Proofs

(©) Let N = agajagazasazasaay. (The proof of the general case

anQ,__1 * * * G1a¢ is similar.)

N=ag@+ D3+ a;0+ D"+ -4 a19 + 1) + a,.

Using the expression M;(9) to mean a multiple of 9, for i = 1, 2, 3, 4,

5,6,7,8, wecanrewrite Nas N = ag[Mg(9) + 1] + a;[M;(9) + 1]+

<o+ a,[M109) 4+ 1] 4+ ao. (See Appendix VI.)

Therefore N=MO +as+a; +a¢+as+ a4+ az + a; +

a; + ay. Certainly a multiple of 9, M(9), is exactly divisible by 3.

So whenever S = ag + a; + -+ - + a; + a, is exactly divisible by

3, then 3 divides N. And whenever S is divisible by 9, then 9 divides N.

(d) Taking N = agazag - a1a,.
N=as7+3)®+a;:7+37 4+ +a1(7+3)+ ao.
N = ag[Mg(7) + 3°] + a7[M7(7) + 37) + - - +

a,[M(7) + 3] + ao. (See Appendix VI.)
N = M(7) + 383 + 37a; + -+ + 3a; + a,.
Since32=7+4+233=4-7—-1,3*=12-7-3,35=35.7 - 2,
32 =104-74+ 1,37 =312-7+4 3,38 =937-7 4 2,
N = M*(7) + (ao + 3a; + 2az) — (a3 + 3a4 + 2a5) +
(ae + 3a7 + 2as).
Since a proof of this kind can be applied to the general case when
N = ana,_, * * * a1aq, whenever 7 divides P, 7 divides N.

(e) Let N = QAgd7Q¢ " * * Q140.
N = ag(ll — 1)® + a;(11 — 1)" + -+ - + a,(11 — 1) + a,.
N = ag[M(11) + 1] + a7[M,(11) — 1] + --- +

a[M,(11) — 1] + a,. (See Appendix VI1.)
N=M(11)+as —a; +ae —as+ a4 —az +a; — a; + ao.
Therefore, if 11 divides Q, 11 divides N.
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ILLUSTRATION 1: We can test N = 317,142 for divisibility by 7 using
Theorem (d) or modular division.
(1) By Theorem (d), we have

a1-24+3-442-)-1-74+3-14+2:-3)y=16—-16=0.
Since 0 is divisible by 7, 7 divides 317,142.
(2) Using modular division, we have
N=3-10°4+1-10*4+7-1034+1-1024+4-10 + 2.
We use synthetic division, reducing coefficients modulo 7 as we proceed
with the division. The divisor is 10 — 7, or 3.

El

3 1 fo 1 4 2
#2962 6 o b5

3 3 2 fo 4 jo

Since the remainder is 0, the division is exact, and 7 must divide N.

ILLUSTRATION 2: Test N = 41,631 for divisibility by 7, by Theorem
(d), and by modular division.
(1) By Theorem (d)

a-14+3-34+2-6)—(:14+3-4=22—-13=09.

Since 9 divided by 7 leaves a remainder of 2, 7 does not divide N.
(2) By modular division, (reducing coefficients modulo 7)

4 1 3

6 3 1
55 fh % I
4 6 J[B 5 2

Since the remainder is 2, the division is not exact and 7 does not
divide N.

ILLUSTRATION 3: Test N = 317,152 for divisibility by 11, by Theorem
(e), and by modular division.
(1) By Theorem (e)

C+14+D-G6+7+3)=4—-15=—11.

Therefore, 11 must divide N.
(2) The divisor for modular division is 10 — 11, or —1.
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3 17 1 5 2 =1
-3 2 -9 g =2
3 -2 9 -8 [ 0

Since the remainder is 0, 11 must divide N.

ILLUSTRATION 4: Test N = 71,351 for divisibility by 11, by Theorem
(e), and by modular division.
(1) Theorem (e) shows that 11 does not divide N.

A+34+ND-GC+D)=11-6=5

(2) Modular division shows the same result.
The divisor is 10 — 11, or —1.

ILLUSTRATION 5: Test N = 24,041 for divisibility by 13, using modular
division. The divisor is 10 — 13, or —3.

2 4 0 4 1 [=3
-6 6 —Jff—-5 3
2 -2 6 -1 4

Since the remainder is 4, the division is not exact and 13 does not
divide 24,041.

GENERAL THEOREM: A number N, written in base b, is divisible by
b <4 1 if the sum of the odd-numbered digits, less the sum of the
even-numbered digits, is divisible by b + 1. The absolute value of the
difference of the sums is used.

Specific Case 1: A number N, written in base 10, is divisible by 114 if
the sum of the even-numbered digits less the sum of the odd-numbered
digits is divisible by 11,.

Specific Case 2: A number N, written in base 9, is divisible by 11, if
the sum of the even-numbered digits less the sum of the odd-numbered
digits is divisible by 11,.
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Example 1: 52789,, is divisible by 11,4 since 54+ 74+ 9 = 21,
less 2 + 8 = 104, equals 11,,, which is obviously divisible by 11,.
Actually, 52789, + 11,4 = 4799,,.

Example 2: 718181y is divisible by 11g since 7 + 8 4+ 8 = 254 less
1414 1=3g equals 224, which is divisible by 11;,. Actually,
7181819 = 115 = 64371,.

Example 3: 18192,, is divisible by 11;, since 8 4+ 9 = 15,5 less
1 41+ 2= 4,,equals 11,5, which is obviously divisible by 11,,.
Actually, 18192, + 11,5 = 16720,,.
Proof
N=aeh"+ab" '+ ab" 2+ -+ ay_3b®+ ap_1b + an
N=ad+D)—=11"4+a b+ D—-11"1 4.+
an [+ 1)~ 1]+ a,
After expansion we can express N as M (b+ 1)+ M(b+ 1) +
«+ <4 M,_1(b + 1) + R, where M (b + 1) represents a multiple of
b+ 1,and

R=ap— a1+ a3 — -+ — an_; + ay,, if nis even, and
R=—ap+a,—az+ - — a, + a,, if nis odd.
S.N=MGb+ 1)+ R, where M(b + 1) = M (b + 1) +

My + 1)+ + Mu_y(b + 1).
. N is divisible by b + 1, if R is divisible by b + 1.

APPENDIX VI Binomial Theorem

If @ and b are two real numbers and n is a natural number, then
(a+ b)n () nb0+ () n—lbl + () n--2b2
(I’:) n—kbk ( l) lbn—l + ( ) Obn
n n!

where (k) =K —R

The number of terms in the expansion of (a 4+ b)" is n + 1.
Two terms symmetrically placed with respect to the beginning and end
of the expansion have equal coefficients. That is,

(1':)= (,,ﬁk)'

ILLUSTRATION: (a + b)* = a* + 4a%b + 6a%b> 4 4ab® + b*
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APPENDIX VII Miscellaneous

1. Factors
(@) Factors of the sum of two cubes

24+ = (x+ 02— xp +yd)

(b) Factors of the difference of two cubes
x3— 3 = (x — p)x* + xy + ¥?)

2. Summations

@ S=1+2+43+ - +n=3n@+1)
S=14+34+5+---+2n—-1=n
S=12+22+32+'~'+n2=(%n)(n+l)(2n+l)
S=1 4254354 4 nd = 1n2n + 112

®S=a+@+d+@+2)+ - +la+ (n— d) =
%n[2a+(n—l)d]

ar®

S=a+a’-+a’-2+...+a’.n—l=al——

-r

S r#l

S=ata+at+ =7, <L

3. Cramer’s Rule
The solutions of the system of the linear equations

ax +by+cz=d;
azx + boy + ¢z = dy
agx + bgy + c3z = dj

a bl (]
arex=%,y=%,z=%‘whereD= as b c¢o| =
as b3 C3
albgca + azbacl -+ 03b102 - albacz - azb103 - aabzcl # 0
di by a dy ¢ a b, d
D, = |d; by c¢3), Dy= |a; dy c3|, D; = |az by d;
ds bz c3 az dz c3 az by d;
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4. Polygonal Numbers
We designate the nth r-agonal number by P,”, where n = 1, 2,
3,...andr = 2,3,4,....

@) P,? the nth linear number isn = n + H—(;;l)-
(&) P,3, the nth triangular number is n(nTM =n-+ l—"(';—_”
(©) P,*, the nth square number is n2 = n + 2"(—"2——1)
(d) P,.%, the nth pentagonal number is "(3"2— D_ . + M"T_l)
(e) P,°% the nth hexagonal number is "“"T—z) =n+ 4"("T—1)
(f) P,’, the nth r-agonal number is

nl2 + (n — 1)(r — 2)] _ n(r —2)(n — 1)

2 n+ 2

5. Finite Mathematical Induction

To prove that a formula or sentence involving one or more variables
is true for all natural numbers greater than or equal to a given natural
number, it is sufficient to show that
(a) the formula holds for the given natural number (usually the
number 1),
() if the formula holds for the natural number k, where k > 1, (or
the given natural number), it also holds for k + 1.
Step (a) is referred to as the verification step.
Step (b) is referred to as the induction step.



